Opérateur de Laplace-Beltrami

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant les mathématiques
Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

L'opérateur de Laplace-Beltrami est une généralisation de l'opérateur laplacien aux variétés riemanniennes. On part de la définition \Delta=\mathrm{div}\ \mathrm{grad}, et l'on est ramené à définir la divergence et le gradient dans le cadre riemannien.

Avertissement : Dans cet article, on utilise la convention de sommation d'Einstein. Même quand le signe somme n'est pas omis, on s'impose la discipline de ne sommer que par rapport à un indice se trouvant à la fois en positions inférieure et supérieure.

Divergence associée à une forme volume[modifier | modifier le code]

Sur une variété différentielle M orientable, la divergence est naturellement associée à une forme volume. Si \omega est une telle forme, toute autre forme de degré maximum s'écrit de façon unique f\omega, où f est une fonction. Cela s'applique à la dérivée de Lie de \omega par rapport à un champ de vecteurs X. La divergence de X (par rapport à \omega) est l'unique fonction telle que \mathcal L_X\omega = (\mathrm{div}_{\omega}X)\omega.

D'après la formule \mathcal L_X=d\circ i_X+i_X\circ d, on a \mathcal L_X\omega =\mathrm d(i_X\omega). Donc, d'après la formule de Stokes, si X est à support compact,

\int_M(\mathrm{div}_{\omega}X)\omega=\!\int_M\mathrm d(i_X\omega)=0

Si \omega s'écrit en coordonnées locales \theta\mathrm dx^1\wedge\cdots\mathrm dx^n, on a

L_X\omega = (L_X\theta)\mathrm dx^1\wedge\cdots\mathrm  dx^n+\theta\sum_{i=1}^n\mathrm dx^1\wedge\cdots L(\mathrm dx^i)\wedge\cdots \mathrm dx^n

(car \mathcal L_X est une dérivation).

Si \textstyle X=\sum_{i=1}^n X^i\frac{\partial}{\partial x^i}, on a \mathcal L_X\mathrm dx^i=\mathrm d(\mathcal L_Xx^i)= d\mathrm X^i, d'où l'on tire \textstyle\mathcal L_X\omega = (\mathcal L_X\theta)\mathrm dx^1\wedge\cdots\mathrm  dx^n + \theta\sum_{i=1}^n\frac{\partial X^i}{\partial x^i} dx^1\wedge\cdots\mathrm  dx^n, et finalement, \textstyle\mathrm{div}_{\omega}X= \frac{\mathrm d\theta(X)}{\theta}+\sum_{i=1}^n\frac{\partial X^i}{\partial x^i}.

Remarque sur l'orientabilité  : L'introduction d'une forme volume suppose la variété orientable. Mais si on change la forme volume \omega en son opposée, \mathrm{div}_{\omega}X) ne change pas. En fait, la divergence ne dépend que de la densité associée à \omega. Contrairement aux apparences, l'hypothèse d'orientabilté est inutile, on a en fait utilisé une orientation locale.

L'exemple le plus important est celui de la divergence définie par la forme volume canonique d'une métrique riemannienne.

\mathrm ds^2 \ = \ g_{ij}(x) \ \mathrm dx^i\mathrm dx^j

En coordonnées locales v_g= \sqrt{\det(g_{ij})}\mathrm dx^1\wedge\cdots\mathrm  dx^n. D'après la remarque qui précède, il n'est nullement nécessaire de supposer la variété orientable. Le déterminant des g_{ij} est souvent noté g, notamment par ceux qui écrivent \mathrm  ds^2 la métrique riemannienne, cela ne porte pas trop à confusion.

Gradient associé à une métrique riemannienne[modifier | modifier le code]

Le gradient d'une fonction (disons lisse) f est l'unique champ de vecteurs, noté \nabla f, tel que  g(X,\nabla f)=\mathrm df(X) pour tout champ de vecteurs X. En coordonnées locales,


\nabla f= \sum_{i=1}^n \left(\sum_{j=1}^n g^{ij}\frac{\partial f}{\partial x^j}\right)
\frac{\partial}{\partial x^i}

Ici, g^{ij}(x) est l'inverse du tenseur métrique, défini en coordonnées par

g_{ik}(x)  g^{kj}(x) \ = \ \delta_{i}^j

 \delta_{i}^j est le symbole de Kronecker.

Définition et propriétés de base du laplacien[modifier | modifier le code]

On définit l'opérateur de Laplace-Beltrami comme l'opérateur différentiel du second ordre \Delta f= \mathrm{div}(\nabla f).

En coordonnées locales,

 \Delta \ = \ \frac{1}{\sqrt{g}} \ \partial_{i} \left[ \sqrt{g} g^{ij}  \partial_{j}  \right]

Si f_1 et f_2 sont C^2 et à support compact on a

\int_Mf_1\Delta f_2v_g= -\int_Mg(\nabla f_1,\nabla f_2)v_g=\int_Mf_2\Delta f_1v_g

Pour le voir, on remarque que si f est une fonction et X un champ de vecteurs,

\mathrm{div}fX=f\mathrm{div}X+\mathrm df(X)=f\mathrm{div}X+g(X,\nabla f)

En appliquant cette relation à f=f_1 et X=\nabla f_2, on obtient


\int_M\bigl(f_1\mathrm{div}\nabla f_2+g(\nabla f_1,\nabla f_2)\bigr)v_g =\int_M\mathrm{div}(f_1\nabla f_2)v_g=0

puisque d'après la formule de Stokes l'intégrale de la divergence d'un champ de vecteurs à support compact est nulle.

Cette formule exprime le fait que \Delta est un opérateur formellement autoadjoint sur C^\infty(M), par rapport au produit scalaire global, défini par

\langle f_1,f_2\rangle :=\int_Mf_1f_2v_g

(noter l'analogie avec les opérateurs symétriques en dimension finie.)

\textstyle\langle f,\Delta f\rangle =-\int_Mg(\nabla f,\nabla f)v_g est négatif ou nul. L'opérateur -\Delta est positif (c'est la raison pour laquelle beaucoup de géomètres riemanniens définissent l'opérateur de Laplace comme -\mathrm{div~grad}). Enfin, si M est une variété compacte sans bord, les seules fonctions à Laplacien nul sont les constantes (de même que les seules fonctions harmoniques sur un domaine compact de \R^n, nulles au bord sont les constantes, la preuve est d'ailleurs la même).

Annexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • (en) Peter Sarnak, « Spectra of hyperbolic surfaces », Bull. Amer. Math. Soc., vol. 40,‎ , p. 441-478 (lire en ligne)
  • (en) Isaac Chavel, Eigenvalues in Riemannian geometry, Academic Press

Articles connexes[modifier | modifier le code]