Mécanique des milieux continus

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

La mécanique des milieux continus est le domaine de la mécanique qui s’intéresse à la déformation des solides et à l’écoulement des fluides. Ce dernier point faisant l’objet de l’article Mécanique des fluides, cet article traite donc essentiellement de la mécanique des solides déformables.

Le tableau suivant indique les divers domaines couverts par la mécanique des milieux continus.

Mécanique des milieux continus Mécanique des solides déformables Élasticité
Déformation plastique Rhéologie
Mécanique des fluides Fluides non newtoniens
Fluides newtoniens

Le milieu continu[modifier | modifier le code]

Si l'on regarde la matière de « très près » (échelle nanoscopique), la matière est granulaire, faite de molécules. Mais à l'œil nu (donc en se plaçant à notre échelle), un objet solide semble continu, c'est-à-dire que ses propriétés semblent varier progressivement, sans à-coups.

L'hypothèse des milieux continus consiste à considérer des milieux dont les propriétés caractéristiques, c'est-à-dire celles qui nous intéressent — densité, élasticité, etc. — sont continues. Une telle hypothèse permet d'avoir recours aux outils mathématiques reposant sur les fonctions continues et/ou dérivables. En pratique, cela revient à considérer que le volume élémentaire de matière , bien que de taille très réduite à l'échelle usuelle (macroscopique) demeure important devant les « volumes » atomiques ou moléculaires, plus précisément possède une taille telle que l'on puisse négliger à tout instant les fluctuations du nombre de particules (atomes ou molécules) contenues dedans (cf. discussion dans l'article sur la notion solide parfait). Tout passage à la limite , auquel on procède pour définir les grandeurs mécaniques locales, sera sous-entendu en respectant ce critère: on définit donc des grandeurs « nivelées ». On procède de même en électromagnétisme classique pour définir les notions de densité de charge ou de courant, de façon à s'abstraire du caractère granulaire de la matière à l'échelle nanoscopique.

Des hypothèses supplémentaires peuvent éventuellement être faites ; ainsi un milieu continu peut être :

  • homogène : ses propriétés sont les mêmes en tout point ;
  • isotrope : ses propriétés ne dépendent pas du repère dans lequel elles sont observées ou mesurées.

De nombreux matériaux utilisés dans l'industrie sont à la fois homogènes et isotropes (métaux usinés ou bruts de fonderie). Cependant, de nombreux matériaux ne sont pas isotropes (tôles laminées, pièces forgées, pièces tréfiléesetc.) ; par ailleurs, l'utilisation de plus en plus fréquentes des matériaux composites a amené à étudier les milieux qui ne sont ni homogènes (sandwiches), ni isotropes (fibres de verre, de carbone ou de kevlar maintenues dans une résine) mais pour lesquels l'hypothèse de continuité (tout au moins par morceaux) reste valable.

Descriptions des milieux continus[modifier | modifier le code]

Pour décrire le milieu, on se donne les outils suivants :

Représentation lagrangienne[modifier | modifier le code]

En représentation lagrangienne, les fonctions décrivant les grandeurs dépendent des variables suivantes :

  • la particule considérée (ou sa position à un temps de référence ) ;
  • le temps.

Si est un champ lagrangien, alors on a :

La représentation lagrangienne suit chaque particule. Le champ lagrangien donne la valeur de la grandeur considérée portée par la particule qui au temps occupait le point .

Représentation eulérienne[modifier | modifier le code]

En représentation eulérienne, les fonctions décrivant les grandeurs dépendent des variables suivantes :

  • le point géométrique considéré ;
  • le temps.

Si est un champ eulérien, alors on a :

Le champ eulérien donne la valeur de la grandeur considérée portée par la particule qui au temps occupe le point .

Utilisation des deux représentations[modifier | modifier le code]

La représentation lagrangienne est souvent plus intuitive au départ, mais elle présente de nombreux défauts :

  • un champ lagrangien est difficilement stationnaire ;
  • il est parfois difficile de suivre une particule.

La représentation eulérienne est peut-être moins intuitive, mais elle a un avantage majeur : la simplicité de la description (par exemple d'un écoulement autour d'un solide).

En description eulérienne, il y a cependant un inconvénient : pour appliquer les théorèmes de la mécanique, il faut considérer un système fermé, or le champ eulérien donne les grandeurs en un point géométrique (donc les particules en ce point changent au cours du temps) ce qui est un système ouvert. Il faut donc être capable d'exprimer les dérivées des grandeurs pour chaque particule en fonction du champ eulérien. Pour cela on peut utiliser la dérivée particulaire, ou la formulation sous forme conservative des différents théorèmes ce qui concerne les équations de Navier-Stokes.

Expression de la dérivée particulaire[modifier | modifier le code]

Dans ce qui suit, représente la dérivée en description eulérienne et la dérivée particulaire (en description lagrangienne).

Si est un champ scalaire :

De même, si est un champ vectoriel, en développant :

On obtiendra le même type de formule pour la dérivée particulaire d'un champ représenté par un tenseur d'ordre quelconque.

La représentation lagrangienne est adaptée à la description des solides, tandis que la représentation eulérienne est adaptée à la description des fluides.

Cinématique des milieux continus (description lagrangienne)[modifier | modifier le code]

On décrit la transformation de chaque point du milieu par une fonction (suffisamment régulière) telle que .

On introduit alors le concept de déformation, pour mesurer la variation de distance entre deux points du solide à la suite de la transformation .

On cherche à avoir une mesure de .

Or on a . On peut donc écrire :

où :

est le gradient de la transformation.

On obtient donc :

On pose :

est l'opérateur des déformations de Green-Lagrange.

Si on introduit le vecteur déplacement , on obtient :

Si l'on fait l'hypothèse des petites déformations, on obtient l'opérateur des déformations linéarisé :

Loi de comportement[modifier | modifier le code]

Les lois de comportement modélisent le comportement des fluides ou solides par des lois empiriques liant deux grandeurs physiques (notamment des grandeurs liées aux efforts en fonction de grandeurs cinématiques) qui sont spécifiques à un matériau ou milieu donné. Elle permettent le calcul de la réponse de ce milieu à des stimuli externes, comme des champs ou des forces qui leur sont appliqués.

À titre d'exemple, les lois de comportement décrivent :

Essais mécaniques[modifier | modifier le code]

Ces essais permettent de mesurer, pour un corps, les principales grandeurs caractéristiques liées à la matière dont il est constitué.

Les propriétés viscoélastiques caractérisent complètement un matériau (solide, pâteux ou liquide). La DM(T)A permet d'accéder aux grandeurs intrinsèques, ainsi que la rhéométrie en oscillation (hors échantillon solide dans ce dernier cas).

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Liens externes[modifier | modifier le code]