Diamant synthétique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Un diamant synthétique taillé, conçu avec la méthode CVD

Un diamant synthétique (aussi appelé diamant de synthèse ou diamant de culture) est produit en utilisant différentes techniques physiques et chimiques, visant à reproduire la structure des diamants naturels.

Les diamants synthétiques sont en janvier 2006 vendus à des prix de 10 % à 50 % inférieurs à ceux des diamants naturels. Leur production annuelle atteignait 3 milliards de carats (600 tonnes) et un montant d'un milliard de dollars, à comparer aux 130 millions de carats (26 tonnes) de l'extraction minière.

Histoire[modifier | modifier le code]

Les joaillers préfèrent vendre un produit de luxe, donc rare. Ce n'est donc pas dans leur intérêt d'accroître la quantité disponible, ils ont fait de gros efforts pour éviter que les pierres de synthèse s'implantent sur le marché[réf. souhaitée]. En revanche, l'industrie apprécie les matériaux durs, comme le diamant, le carbure de silicium, le carbure de tungstène, etc. La synthèse de diamant fut l'une des voies explorées dans cette recherche de matériaux durs.

Avec la découverte par Smithson Tennant en 1797 que le diamant est une forme cristalline du carbone s'ouvre la voie de la synthèse de ce matériau. Il faut attendre un peu moins d'un siècle pour que les premières expériences sérieuses commencent avec James Ballantyne Hannay en 1880 et Henri Moissan en 1893. L'expérience de Moissan ne semble pas avoir été concluante, ce dernier n'ayant obtenu que de la moissanite, autrement dit du carbure de silicium. Celle de Hannay est plus controversée, car il a été impossible de reproduire ses résultats. Plusieurs autres expériences ont lieu et seulement deux autres pourraient avoir été un succès. Celle de Otto Ruff en 1917 et celle de Willard Hersey en 1926[1]. Ces expériences ne sont que des débuts hésitants de la synthèse du diamant, la première véritable synthèse a lieu dans les années 1950.

L'histoire ne reprend donc que le à Stockholm en Suède, lors du projet QUINTUS de l'entreprise d'électricité ASEA. La technique, conçue par Baltzar von Platen et le jeune ingénieur Anders Kämpe, sera gardée secrète. Un an plus tard, General Electric répète l'opération et publie ses résultats dans le magazine Nature. C'est à cette date qu'est officiellement reconnue la création du premier diamant synthétique.

À la fin des années 1950, De Beers ainsi que les Russes et les Chinois lancèrent la fabrication de diamants synthétiques pour l'industrie. Cela eut pour conséquence de faire chuter la valeur des diamants naturels destinés à l'industrie.

La première véritable utilisation des diamants de synthèse en joaillerie débute vers le milieu des années 1990. En janvier 2006, principalement deux entreprises se partagent le secteur :

De nombreux autres sociétés[3] se sont développées sur ce marché en forte expansion, depuis la fabrication jusqu'à leur utilisation dans divers procédés industriels (outillage, biotechnologie - voir infra applications), et de nouveau procédés pour fabriquer des nanodiamants pour les biotechnologies, l'électronique[4]...

Propriétés[modifier | modifier le code]

Traditionnellement, l'absence de défauts cristallins est considérée comme la plus importante qualité d'un diamant. La pureté, et la perfection cristalline rend les diamants transparents et nets. D'autre part, leur dureté, la dispersion optique qu'ils génèrent, leur haute conductivité thermique, et leur stabilité chimique en font une pierre précieuse populaire. Alors que la forte dispersion optique est une propriété intrinsèque de tous les diamants, les autres propriétés de ces derniers varient en fonction de la façon dont ils ont été créés[5].

Cristallinité[modifier | modifier le code]

Un diamant peut être monocristallin, ou polycristallin, c'est-à-dire fait de nombreux cristaux plus petits. On utilise typiquement les grands diamants monocristallins, nets et transparents en joaillerie. Un diamant polycristallin (Polycrystalline diamond (PCD) en anglais) est constitué de nombreux petits grains facilement visibles à l’œil parce qu'ils absorbent et dispersent beaucoup la lumière. Il est inadapté à la joaillerie et est donc plutôt utilisé pour des applications industrielles comme l’exploitation minière et la fabrication d’outils coupants. Le PCD est souvent décrit par la taille des grains qui le constituent. La taille de ces grains peut aller de quelques nanomètres à plusieurs centaines de micromètres. Les diamants correspondants sont usuellement appelés « nanocristallins » et « microcristallins »[6].

Dureté[modifier | modifier le code]

Le diamant synthétique est la matière la plus dure connue[7], la dureté étant définie comme la résistance à la rayure et étant notée de 1 (le plus tendre) à 10 (le plus dur), selon l'échelle de dureté minérale de Mohs[8]. La dureté d’un diamant synthétique dépend de sa pureté, de sa perfection cristalline et de son orientation : la dureté est plus élevée pour des cristaux purs et sans défauts, avec un diamant orienté dans la direction [111], soit le long de la plus longue diagonale de la construction cubique du diamant en question[9]. Les diamants nanocristallins produits par dépôt chimique en phase vapeur (Chemical vapor deposition (CVD) en anglais) peuvent avoir une dureté allant de 30 % à 75 % de celle d'un monocristal, et cette dureté peut être contrôlée pour certaines applications spécifiques. Certains diamants monocristallins et certains diamants nanocristallins HPHT sont plus durs qu'aucun diamant naturel connu[7],[10],[11].

Impuretés et inclusions[modifier | modifier le code]

Chaque diamant contient d’autres atomes que le carbone dans des concentrations détectables par des méthodes analytiques. Ces atomes peuvent se regrouper en phases macroscopiques appelées inclusions. Les impuretés sont en général évitées, mais peuvent être incorporées, comme moyen de contrôler certaines propriétés du diamant. Les processus de croissance du diamant synthétique utilisant des solvants catalytiques, mènent généralement à la formation de nombreux complexes, affectant les propriétés électroniques du matériau.

Par exemple, un diamant pur est un isolant électrique, mais un diamant auquel on a ajouté du bore est conducteur, et dans certains cas supraconducteur[12], lui permettant d’être utilisé pour des applications électroniques. Les impuretés azotées empêchent le mouvement de la structure et place cette dernière sous une contrainte compressive, augmentant par-là sa dureté et sa solidité[13].

Conductivité thermique[modifier | modifier le code]

Contrairement à la plupart des isolants électriques, le diamant pur est un bon conducteur de chaleur du fait des fortes liaisons covalentes constituant le cristal. La conductivité thermique du diamant pur est la plus élevée connue, derrière celle du graphène, pour un solide. Les diamants synthétiques monocristallins enrichis en atomes de carbone 12 (99,9%), isotopiquement purs, ont la plus haute conductivité thermique de tous les matériaux, 30 W/cm/cm.K à température ambiante, soit 7,5 fois plus que le cuivre. La conductivité des diamants naturels est réduite de 1,1% par le carbone 13 naturellement présent, qui déshomogénéise la structure[14]. La conductivité thermique naturelle du diamant est utilisée par les bijoutiers et autres gemmologues pour différencier un vrai diamant d’une imitation. Ce test repose sur une paire de thermistances alimentées par batterie, montée sur une pointe cuivre. L’une fonctionne comme un dispositif de chauffage pendant que l’ autre mesure la température de la pointe de cuivre. Si la pierre testée est un diamant, elle conduira l’énergie thermique de la pointe assez rapidement pour produire une chute de température mesurable. Le test prend 2 à 3 secondes[15].


Techniques[modifier | modifier le code]

Haute pression, haute température[modifier | modifier le code]

La technique HPHT (en français Haute pression, haute température) consiste à faire un mélange de carbone (sous une forme abondante) et de métaux de transition (qui feront office de solvants) et à soumettre le tout à une très haute pression (environ 58 000 atmosphères) et température (environ 1 400 °C). La formation du diamant se fait alors par germination et croissance. Dans la méthode du gradient de température, un germe de diamant est inséré dans le réacteur avant la réaction.

Cette technique ne produit pour l'instant que des diamants de couleurs (jaune, orange, rose et bleu), qui ne sont pas purs.

Plusieurs entreprises, comme LifeGem ou Algordanza, utilisent cette technique pour réaliser des diamants composés du carbone issus des cendres de la crémation.

Dépôt chimique en phase vapeur[modifier | modifier le code]

La technique CVD (en anglais Chemical vapor deposition; en français Dépôt chimique en phase vapeur) crée le diamant par couches successives. La méthode consiste à placer une couche de silice ou de diamant (substrat) dans une chambre où règne typiquement une pression d'un dixième d'atmosphère. De l'hydrogène et du méthane (gaz précurseurs) sont alors injectés et l'ensemble est par la suite ionisé à l'aide d'une décharge micro-onde (fréquence de 2,45 GHz). Un plasma est alors initié et les espèces qui en sont issues (ions, radicaux, etc. provenant des gaz initialement injectés) s'adsorbent sur le substrat. La formation d'une couche de diamant qui croît avec le temps a lieu après diffusion et réaction en surface des espèces réactives. Les diamants pourront être obtenus après découpe de cette couche ; cette dernière peut également servir telle quelle pour l'industrie microélectronique notamment.

Cette technique produit des diamants bien plus purs que ceux qui sont obtenus avec la HPHT. Mais elle produit des diamants moins résistants que la méthode HPHT.

Ethanol[modifier | modifier le code]

Une autre technique permet d'appliquer une fine pellicule de diamants de synthèses sur un matériau pour le rendre plus résistant à l'usure. Cette technique utilise une solution composée de 40 % d'éthanol et 60 % d'eau. Cette solution est vaporisée et le gaz résultant chauffé à 800 °C pour les molécules carbonées, permettant alors la formation de diamants de tailles comprises entre 100 et 400 nm [16].

Le tequila (la boisson nationale mexicaine) étant composée en même proportion d'éthanol et d'eau, les trois chercheurs mexicains à l'origine de cette découverte ont ensuite démontré que l'utilisation de tequila blanche est possible, malgré les impuretés. Cette méthode bon marché semble offrir des perspectives intéressantes[16].

Différence avec les diamants naturels[modifier | modifier le code]

Actuellement (janvier 2006), il est assez difficile de faire la différence entre un diamant synthétique et naturel[réf. nécessaire]. Les diamants synthétiques restent de petite taille et ne peuvent certainement pas concurrencer le plus gros diamant brut du monde, le Cullinan, qui pèse 3 106 carats, soit 621 grammes.

Le géant du diamant naturel De Beers, développe plusieurs techniques pour détecter ces nouveaux diamants. Une de ces techniques est de détecter la forme de croissance du diamant, qui n'est pas la même que dans la nature. Ainsi, les diamants obtenus par la méthode HPHT créent des secteurs de croissances en forme de cubes. Certaines formes d'impuretés ne sont également pas présentes dans la nature.

La méthode CVD en revanche, produit des diamants plus difficilement différentiables des diamants naturels, car étant très purs, les impuretés et les zones de croissance cubique sont moins distinguables. Cependant, la pureté quasi parfaite des diamants produits par la méthode CVD peut être un indice, induisant ainsi de la méfiance quant à l'origine du diamant.

Applications[modifier | modifier le code]

Les diamants synthétiques sont attractifs par leur faible prix en joaillerie, mais ils restent souvent trop petits. En outre, un conflit les oppose aux diamants naturels.

Les applications principales sont dans l'industrie[17] :

  • Fabrication d'outils : meules, limes, rayonneurs, rodage, découpe, abrasifs, polissage. Les diamants sont selon les applications taillés, fixés, englués, ou mis en suspension dans un silicone colloïdale.
  • Amélioration de matériaux : l'ajout de nanodiamants (en faible quantité : 0,5 à 1,5 %), souvent fonctionnalisé ou attachés à un matrice (polymères) en améliore la résistance à l'abrasion et la dureté. L'augmentation de la résistance est obtenue aussi par dépôt sur des surfaces métalliques (électroplaques).
  • Biomédical : polissage dentaire

Une application en développement important concerne les biotechnologies: les nanodiamants ont été utilisés :

  • pour véhiculer des toxines, ou le PEI800 contre le cancer [18],[19]
  • pour de l'imagerie médicale fluorescente, avec des inclusions d'azote, et de la thérapie du cancer par échauffement sous irradiation électromagnétique[20]
  • pour mesurer la température in vivo, à 0,05 °K près[21]

Appellation en France[modifier | modifier le code]

En France, l'usage commercial pour de tels diamants oblige les vendeurs à utiliser le terme "synthétique", de manière à ne pas tromper le client.

Voici un extrait du décret 2002-65 [22] du 14 janvier 2002 relatif au commerce des pierres gemmes et des perles :

« Art. 4 : Les qualificatifs suivants complètent respectivement la dénomination des matières et produits mentionnés ci-dessous :
(...)
- "synthétique" pour les pierres qui sont des produits cristallisés ou recristallisés dont la fabrication provoquée totalement ou partiellement par l'homme a été obtenue par divers procédés, quels qu'ils soient, et dont les propriétés physiques, chimiques et dont la structure cristalline correspond pour l'essentiel à celles des pierres naturelles qu'elles copient;
(...)
L'emploi des termes : "élevé", "cultivé", "de culture", "vrai", "précieux", "fin", "véritable", "naturel" est interdit pour désigner les produits énumérés au présent Article. (...) »

Références[modifier | modifier le code]

  1. (fr) Jean-Claude Michel, « Les diamants synthétiques ou de culture », BRGM,‎ 2008 (consulté en )
  2. Gemesis a été créée par Carter Clarke, après sa découverte des installations russes durant l'été 1995. Depuis, Gemesis améliore la technique High pressure, high temperature (HPHT), qui a été développée en Russie. Apollo Diamonds pour sa part utilise la technique Chemical vapor deposition (CVD), découverte par son fondateur, Robert Linares, en 1996.
  3. http://supplier.ec21.com/nano_diamond.html
  4. Article (2009) sur un nouveau procédé pour de fabriquer à façon des nanoparticules de diamant fluorescent, par le laboratoire "Structure et activité des biomolécules normales et pathologiques - SABNP", Inserm / UEVE U829 (Genopole d’Evry, France) en collaboration avec le Centre des Matériaux de l’École des Mines (Evry, France), l’UTBM (Université de Technologie de Belfort-Montbéliard) et l’Institut de Physique de l’Université de Stuttgart (Allemagne).
  5. Spear and Dismukes, p. 308–309
  6. Zoski, Cynthia G., Handbook of Electrochemistry, Elsevier,‎ (ISBN 0-444-51958-0, lire en ligne), p. 136.
  7. a et b V. Blank, M. Popov, G. Pivovarov, N. Lvova, K. Gogolinsky et V. Reshetov, « Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear », Diamond and Related Materials, vol. 7, no 2–5,‎ , p. 427 (DOI 10.1016/S0925-9635(97)00232-X, Bibcode 1998DRM.....7..427B, lire en ligne)
  8. Read, P. G., Gemmology, Butterworth-Heinemann,‎ (ISBN 0-7506-6449-5, lire en ligne), p. 49–50.
  9. Neves, A. J. and Nazaré, M. H., Properties, Growth and Applications of Diamond, IET,‎ (ISBN 0-85296-785-3, lire en ligne), p. 142–147.
  10. Sumiya, H., « Super-hard diamond indenter prepared from high-purity synthetic diamond crystal », Rev. Sci. Instrum., vol. 76, no 2,‎ , p. 026112 (DOI 10.1063/1.1850654, Bibcode 2005RScI...76b6112S)
  11. Chih-Shiue Yan, Ho-Kwang Mao, Wei Li, Jiang Qian, Yusheng Zhao et Russell J. Hemley, « Ultrahard diamond single crystals from chemical vapor deposition », Physica Status Solidi (a), vol. 201, no 4,‎ , R25 (DOI 10.1002/pssa.200409033)
  12. E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'Nik, N. J. Curro, J. D. Thompson et S. M. Stishov, « Superconductivity in diamond », Nature, vol. 428, no 6982,‎ , p. 542–5 (PMID 15057827, DOI 10.1038/nature02449, Bibcode 2004Natur.428..542E, arXiv cond-mat/0404156, lire en ligne)
  13. Catledge, S. A. et Yogesh K. Vohra, « Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations », Journal of Applied Physics, vol. 86,‎ , p. 698 (DOI 10.1063/1.370787, Bibcode 1999JAP....86..698C)
  14. Lanhua Wei, P. Kuo, R. Thomas, T. Anthony et W. Banholzer, « Thermal conductivity of isotopically modified single crystal diamond », Phys. Rev. Lett., vol. 70, no 24,‎ , p. 3764–3767 (PMID 10053956, DOI 10.1103/PhysRevLett.70.3764, Bibcode 1993PhRvL..70.3764W)
  15. Wenckus, J. F. "Method and means of rapidly distinguishing a simulated diamond from natural diamond" (en) Brevet U.S. 4488821 December 18, 1984
  16. a et b (fr) Laurent Sacco, « Une recette pour fabriquer des diamants... avec de la tequila », Futura-Sciences,‎ (consulté le 12 novembre 2008)
  17. nanodiaproducts.com, Masnada.com
  18. Article 2011 Sciences.blogs.liberation.fr: "des-nanodiamants-pour-soigner-le-cancer-du-sein"
  19. Article (2009) / Futura-Sciences.com : "Des nanodiamants pour la thérapie génique".
  20. IUT d’Evry
  21. Article (2009) / Futura-Sciences.com : "Des nanodiamants pour prendre la température".
  22. (fr) Décret français n° 2002-65 du 14 janvier 2002 relatif au commerce des pierres gemmes et des perles

Voir aussi[modifier | modifier le code]

Source de l'article[modifier | modifier le code]

  • La partie « Propriétés » est traduite de l'article correspondant de la page anglaise de wikipedia.
  • Des diamants plus vrais que nature, de Sylvie Rouat, Sciences et Avenir de janvier 2006