Adaptation visuelle

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Adaptation.

L’adaptation visuelle est le processus par lequel le système visuel adapte la perception aux propriétés de l'environnement lumineux. Elle permet la vision dans des intensités lumineuses très variées, et la reconnaissance de la couleur des objets vus dans des lumières de répartitions spectrales différentes[1].

On peut distinguer deux processus similaires. L’adaptation au niveau lumineux, pour ce qui concerne les intensités lumineuses, et l’adaptation chromatique pour ce qui concerne la répartition spectrale de l'énergie lumineuse.

Adaptation au niveau lumineux[modifier | modifier le code]

Lorsque vous êtes en plein jour, allumer une bougie n’éclaire pas une pièce tandis qu’en pleine nuit noire, la bougie éclaire énormément. Physiquement parlant, la lumière dégagée par la bougie n’a pas changé, c’est donc notre œil qui s’est adapté à l’ambiance.

Dans une même scène, on distingue des luminosités différentes dans un facteur 100 environ ; les objets visuels qui diffèrent trop de la moyenne apparaissent soit comme des blancs éblouissants, soit comme des noirs tous identiques. Cet éclairement moyen est très variable. On voit quelque chose dans l'obscurité à partir d'environ un dix-millième de lux, jusqu'à l'éblouissement vers cent mille lux[2]. Le rapport entre les luminosités est de l'ordre de un milliard, et pour s'adapter à cet énorme écart, on distingue 2 systèmes :

  • la réaction pupillaire ,
  • l'adaptation rétinienne.

La réaction pupillaire[modifier | modifier le code]

Eye dilate-thumb 300px.gif

Comme le diaphragme des appareils photo, l'iris « s’ajuste » à la luminosité grâce à deux feuillets de muscles lisses ; le muscle circulaire, qui contracte la pupille (dans la lumière) et le muscle radial qui la dilate (dans l'obscurité).

La réaction pupillaire est rapide mais elle ne compense les différences d'éclairement que dans un facteur 25 environ.

En cas d'augmentation brusque de la lumière, après entre 0,2 et 0,5 s, de latence, la pupille se contracte en 2 s, puis se stabilise en 5 s. Au bout de quelques minutes, la vision s'est accoutumée au nouvel éclairage et la pupille revient à son état moyen. Si la lumière faiblit, la pupille réagit en sens inverse, se dilatant jusqu'à ce que le système visuel ait compensé les nouvelles conditions[3].

L'adaptation rétinienne[modifier | modifier le code]

La rétine comporte deux types de récepteurs lumineux, les bâtonnets, très sensibles, et les cônes, moins sensibles, mais qui permettent la vision des couleurs, de sensibilité très différente, mais dont les plages de fonctionnement s'étend, pour les uns comme pour les autres, bien au-delà des possibilités de compensation de la pupille. Le système visuel, cependant, ne fonctionne pas directement avec les influx nerveux issus des cônes, mais à partir des différences entre les différentes parties d'une scène, avec un temps de réaction plus lent, tandis que les flux des substances chimiques qui gouvernent la sensibilité des cônes et des bâtonnets est encore plus lent.

L’adaptation à l’obscurité se déroule en deux phases dont la première est d'environ 3 minutes et la seconde d’une heure[4]. L’adaptation à la lumière se fait aussi en deux phases.

Adaptation et délai de vision[modifier | modifier le code]

L'augmentation de la sensibilité visuelle pour correspondre à un environnement obscur se fait indépendamment pour chaque œil. Elle augmente le retard entre l'arrivée de la lumière sur la rétine et la transmission de l'influx nerveux.

Le pendule de Pulfrich :

L'expérience du pendule de Pulfrich peut se réaliser avec peu de moyens.

Une boule sur un fond contrasté, suspendue à un fil, oscille devant l'observateur. La boule semble se déplacer de gauche à droite. Lorsqu'un verre sombre diminue la vision d'un œil, la boule semble décrire une ellipse en profondeur. En changeant le verre d'œil, la rotation apparente s'inverse.

L'effet s'explique par le retard de l'œil dont la sensibilité a dû s'accroître pour correspondre à la lumière moindre. L'information transmise par l'œil obscurci est en retard. La différence d'angle de vision, qui donne la notion de relief, de profondeur, se trouve donc faussée : elle prend en considération, pour un des yeux, une position antérieure de la boule. Plus la boule se déplace rapidement, plus l'effet est important.

En mesurant, par des repères fixes, la profondeur apparente de l'ellipse, on peut mesurer le déphasage, et de là le retard[5].

Adaptation chromatique[modifier | modifier le code]

L'appareil visuel adapte la vision à la répartition spectrale de l'éclairage[6].

C'est un processus comparable à celui de l'adaptation rétinienne. Lorsque l'éclairage change brusquement, comme il arrive par exemple lorsqu'on passe d'un lieu éclairé par le jour à un autre installé avec des lumières fluorescentes, on a d'abord conscience de la différence d'éclairage, puis celle-ci s'estompe, jusqu'à ce qu'on retrouve une perception des couleurs similaires à celle que l'on avait auparavant[7].

L'observateur décompte l'effet de l'éclairage, pour pouvoir considérer la couleur comme un attribut stable de l'objet. En colorimétrie, on produit des tables permettant de situer les lumières correspondant à une couleur de surface examinée sous divers illuminants[8]. Les films de la photographie argentique en couleurs, comme les capteurs des caméras vidéo et appareils photo numériques n'effectuant aucune adaptation, l'opérateur doit corriger la couleur de l'éclairage par des filtres ou effectuer un réglage appelé balance des blancs. Les fabricants ont intégré, dans les appareils destinés au grand public, des automatismes qui évaluent, d'après les couleurs de la scène, l'adaptation chromatique humaine, et déterminent les réglages nécessaires pour la reproduire.

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • Richard Gregory, Eye and Brain : The psychology of seeing, Princeton University Press, , 5e éd.
    • Richard Langton Gregory, L'œil et le cerveau : la psychologie de la vision [« Eye and Brain: The Psychology of Seeing »], De Boeck Université,
  • Yves Le Grand, Optique physiologique : Tome 2, Lumière et couleurs, Paris, Masson, , 2e éd..
  • Robert Sève, Science de la couleur : Aspects physiques et perceptifs, Marseille, Chalagam,

Articles connexes[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. Sève 2009, p. 260.
  2. Sève 2009, p. 26 et 260.
  3. Le Grand 1972, p. 62-63.
  4. Le Grand 1972, p. 149 ; 30 min pour Sève 2009, p. 260.
  5. Gregory 1997, p. 89-91 (Chap. 5 Seeing Brightness).
  6. Sève 2009, p. 260-269.
  7. Sève 2009, p. 260-270 ; Le Grand 1972, p. 196.
  8. Sève 2009, p. 261