Aller au contenu

Glossaire de la géométrie riemannienne

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 2 décembre 2021 à 13:33 et modifiée en dernier par SGlad (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

La géométrie riemannienne est un domaine des mathématiques étudiant les propriétés des variétés riemanniennes. Cette page rappelle brièvement les définitions des termes récurrents rencontrés.

Sommaire :

A

  • Application conforme : Entre deux variétés riemanniennes, application qui préserve les angles ; de manière équivalente application qui transporte une métrique en une métrique conforme ;
  • Application exponentielle : Application différentiable définie naturellement pour toute variété riemannienne complète. Si est un vecteur tangent à la variété en m, la géodésique d'origine m et de vitesse initiale est donnée par .

C

E

  • Espace homogène : Variété sur laquelle agit transitivement un groupe de Lie.
  • Espace symétrique : Variété riemannienne pour laquelle la symétrie géodésique par rapport à n'importe quel point

est une isométrie globale.

F

G

H

I

  • Identités de Bianchi : Identité remarquable portant sur la courbure de la connexion de Levi-Civita ;
  • Inégalité de Bishop-Gromov : Estimation sur le volume des boules d'une variété riemannienne suivant des estimations sur la courbure de Ricci ;
  • Inégalité isopérimétrique : Toute inégalité donnant une majoration du volume riemannien enfermé par une hypsersurface en fonction du volume de cette dernière ;
  • Involution : Isométrie sur une variété riemannienne fixant un point et dont la différentielle en ce point est -Id ;[réf. nécessaire]
  • Isométrie : Entre deux variétés riemanniennes, application différentiable et bijective envoyant métrique riemannienne sur métrique riemannienne ; ou de manière équivalente, application bijective préservant les distances associées;

L

  • Laplacien : Opérateur différentiel défini sur toute variété riemannienne ;

M

  • Métrique de Carnot-Carathéodory
  • métrique riemannienne : Collection de formes bilinéaires symétriques définies positives définies sur les espaces tangents d'une variété, avec une certaine régularité dépendant du contexte ;
  • Mouvement brownien ou processus de Wiener, est une description mathématique du mouvement aléatoire d'une « grosse » particule ;
  • Métrique d'Einstein : métrique riemannienne pour laquelle la courbure de Ricci est proportionnelle à la métrique.

N

P

Q

  • Quasi-isométrie : Applications (pas nécessairement continue) entre variétés riemanniennes ou entre espaces métriques qui ne dilatent pas excessivement les distances.

R

soit un difféomorphisme sur son image ;

  • Revêtement riemannien : Revêtement d'une variété riemannienne muni de la métrique tirée en arrière ;
  • Rigidité de Mostow : sous sa version la plus simple, le théorème de rigidité de Mostow assure qu'à partir de la dimension

3, deux variétés riemanniennes compactes à courbure constante négative qui sont difféomorphes sont aussi isométrique.

S

T

V

Autres lexiques mathématiques