Théorème de Gerschgorin

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En analyse numérique, le théorème de Gerschgorin est un résultat permettant de borner a priori les valeurs propres d'une matrice carrée. Il a été publié en 1931 par le mathématicien biélorusse Semyon Aranovich Gershgorin (en). Son nom peut être transcrit de diverses manières : Gershgorin, Gerschgorin ou Geršgorin.

Le théorème[modifier | modifier le code]

Énoncé[modifier | modifier le code]

Soit A une matrice complexe de taille n×n, de terme général (aij). Pour chaque indice de ligne i entre 1 et n on introduit le disque de Gerschgorin correspondant

D_i=\left\{z\in \mathbb{C}, |a_{ii}-z|\leq \sum_{j\neq i}|a_{ij}| \right\}=D(a_{ii},R_i)

qui constitue effectivement un disque dans le plan complexe, de rayon Ri.

Théorème : toute valeur propre de A appartient à l'un au moins des disques de Gerschgorin.

En appliquant le théorème à la matrice transposée de A, une nouvelle information est donnée sur la localisation des valeurs propres : elles se trouvent dans la réunion des disques de Gerschgorin associés aux colonnes

\tilde{D}_j=\left\{z\in \mathbb{C}, |a_{jj}-z|\leq \sum_{i\neq j}|a_{ij}| \right\}=D(a_{jj},\tilde{R}_j)

Démonstration[modifier | modifier le code]

Soient λ une valeur propre de A et x = (x1, ..., xn) un vecteur propre associé. Pour i compris entre 1 et n, on a

(\lambda - a_{ii})x_i = \sum_{j\neq i} a_{ij}x_j

Choisissons un indice i pour lequel le module de xi est maximal. Puisque x est un vecteur propre, |xi| est non nul et il est possible de former le quotient

|a_{ii} - \lambda| = \left|\sum_{j\neq i} a_{ij}\frac{x_j}{x_i}\right| \leq \sum_{j\neq i} |a_{ij}\frac{x_j}{x_i}| \leq \sum_{j\neq i} |a_{ij}|

Une variante de démonstration est de remarquer que 0 est valeur propre de A-\lambda I_n et d'utiliser un lemme d'Hadamard.

Références[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Article connexe[modifier | modifier le code]

Ovale de Cassini

Liens externes[modifier | modifier le code]