Algorithme de Levenberg-Marquardt

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Marquardt (homonymie).

L’algorithme de Levenberg-Marquardt, ou algorithme LM, permet d'obtenir une solution numérique au problème de minimisation d'une fonction, souvent non linéaire et dépendant de plusieurs variables. L'algorithme interpole l'algorithme de Gauss-Newton et l'algorithme du gradient. Plus stable que celui de Gauss-Newton, il trouve une solution même s'il est démarré très loin d'un minimum. Cependant, pour certaines fonctions très régulières, il peut converger légèrement moins vite. L'algorithme fut découvert par Kenneth Levenberg, puis publié par Donald Marquardt.

C'est un problème qui se présente souvent en régression linéaire et non linéaire.

Application à la méthode des moindres carrés[modifier | modifier le code]

Énoncé[modifier | modifier le code]

Son application principale est la régression au travers de la méthode des moindres carrés : étant donné un certain nombre de paires de données (ti, yi), on cherche le paramètre a de la fonction f(t|a) de sorte que la somme des carrés des déviations :

S(\boldsymbol a) = \sum_{i=1}^m [y_i - f(t_i | \boldsymbol a) ]^2\,

(Expression [1])

soit minimale.

Solution[modifier | modifier le code]

La procédure de l'algorithme est itérative. On part d'un paramètre initial, que l'on suppose « assez proche » d'un minimum, et qui constituera le vecteur p de départ. Dans beaucoup de cas, un paramètre de départ « standard », tel que pT=(1,1,…,1) fonctionnera sans problème. Dans certains cas, il n'y a convergence que si le vecteur de départ n'est pas trop éloigné de la solution.

À chaque itération, on remplace p par une nouvelle estimation p + q. Afin de déterminer q, les fonctions fi(p + q) sont approchées en étant linéarisées :

f(p + q) ≈ f(p) + Jq

où on a noté J la jacobienne de f en p.

À un minimum de la somme des carrés S, on a \nabla_{q} S=0. En dérivant le carré de l'expression [1] de droite, qui s'annule donc, on obtient :

(JTJ)q = JT[yf(p)]

d'où l'on tire aisément q en inversant JTJ.
Dans l'inversion matricielle, tout va dépendre du rapport entre la valeur propre la plus "grande" en norme, et la valeur propre la plus petite ; ce rapport, appelé "conditionnement de matrice", va concrètement refléter la robustesse de l'algorithme face au bruit.
Le point essentiel de l'algorithme de Levenberg-Marquardt est d'approcher cette équation, en l' « amortissant » un peu.
(On parle alors de "chargement de la diagonale" afin de contourner le mauvais conditionnement le cas échéant, problème que l'on retrouve avec l'algorithme de Capon et que l'on peut résoudre par une décomposition en valeurs singulières) :

(JTJ + λ.diag(JTJ))q = JT[yf(p)].

Le facteur d'amortissement positif λ est ajusté à chaque nouvelle itération. Si la diminution de S est rapide, on peut utiliser une valeur plus faible - ce qui rapproche l'algorithme de celui de Gauss-Newton. Si en revanche une itération est peu efficace, on peut augmenter λ - ce qui rapproche cette fois l'algorithme de celui du gradient. Un tel facteur d'amortissement est utilisé par exemple dans la régularisation de Tikhonov, utilisée pour résoudre certains problèmes linéaires.

Si on a effectué plus d'un certain nombre d'itérations, ou bien que l'on s'est approché suffisamment d'un minimum, la procédure se termine et renvoie le paramètre p comme estimation de la solution.

Choix du paramètre d'amortissement[modifier | modifier le code]

De nombreux arguments, plus ou moins heuristiques ont été proposés afin de déterminer le meilleur facteur d'amortissement λ. Des démonstrations théoriques montrent que certains choix garantissent une convergence locale - mais peuvent afficher une convergence faible près de l'optimum.

La valeur absolue de tout choix dépend de l'échelle du problème. Marquardt recommandait de commencer à partir de λ0 et avec un facteur ν>1. On pose alors au départ λ=λ0 et calculons la somme des carrés des déviations S(p) après une itération, en utilisant le facteur d'amortissement λ=λ0, puis en utilisant λ/ν. Si les deux derniers renvoient un point moins bon que le point de départ, on augmente λ en le multipliant par ν, jusqu'à atteindre un point meilleur avec un nouveau facteur λνk pour un certain k.

Si l'utilisation du facteur λ/ν donne une somme plus faible, alors il est pris comme nouvelle valeur de λ et l'algorithme continue. Si l'utilisation de λ/ν donne une somme plus importante, mais que l'utilisation de λ donne une somme plus faible, alors λ est conservé.

Références[modifier | modifier le code]

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Levenberg-Marquardt algorithm » (voir la liste des auteurs)
  • (en) K. Levenberg, « A Method for the Solution of Certain Problems in Least Squares », dans Quart. Appl. Math. 2, 1944, p. 164-168
  • (en) D. Marquardt, « An Algorithm for Least-Squares Estimation of Nonlinear Parameters », dans SIAM J. Appl. Math. 11, p. 1963, 431-441
  • (en) P. E. Gill et W. Murray, « Algorithms for the solution of the nonlinear least-squares problem », SIAM J. Numer. Anal., vol. 15, no 5,‎ 1978, p. 977-992

Liens externes[modifier | modifier le code]

Descriptions de l'algorithme[modifier | modifier le code]

Mises en œuvre[modifier | modifier le code]