Système quater-imaginaire

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Le système de numération quater-imaginaire fut proposé en premier par Donald Knuth en 1955, lors d'une soumission à une recherche de talent scientifique au lycée. C'est un système positionnel non standard (en) car à base complexe (en), qui utilise comme base l'imaginaire pur 2i. Il peut représenter chaque nombre complexe en utilisant seulement les chiffres 0, 1, 2 et 3 (les réels négatifs, dont la représentation dans un système standard utilise le signe moins, sont représentables en quater-imaginaire par une simple suite de chiffres).

Puissances de 2i[modifier | modifier le code]

n −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
(2i)n 1/256 i/128 −1/64 −i/32 1/16 i/8 −1/4 −i/2 1 2i −4 −8i 16 32i −64 −128i 256

Du système décimal vers le système quater-imaginaire[modifier | modifier le code]

Base 10 Base 2i
1 1
2 2
3 3
4 10300
5 10301
6 10302
7 10303
8 10200
9 10201
10 10202
11 10203
12 10100
13 10101
14 10102
15 10103
16 10000
Base 10 Base 2i
–1 103
−2 102
−3 101
−4 100
−5 203
−6 202
−7 201
−8 200
−9 303
−10 302
−11 301
−12 300
−13 1030003
−14 1030002
−15 1030001
−16 1030000
Base 10 Base 2i
i 10,2
2i 10  
3i 20,2
4i 20  
5i 30,2
6i 30  
7i 103000,2
8i 103000  
9i 103010,2
10i 103010  
11i 103020,2
12i 103020  
13i 103030,2
14i 103030  
15i 102000,2
16i 102000  
Base 10 Base 2i
−i 0,2
−2i 1030  
−3i 1030,2
−4i 1020  
−5i 1020,2
−6i 1010  
−7i 1010,2
−8i 1000  
−9i 1000,2
−10i 2030  
−11i 2030,2
−12i 2020  
−13i 2020,2
−14i 2010  
−15i 2010,2
−16i 2000  

Exemples[modifier | modifier le code]

donc

De même,

  • La conversion du produit par i d'un nombre dyadique aussi :

Références[modifier | modifier le code]