Norme matricielle

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

En mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices.

Dans ce qui suit, K désigne le corps des réels ou des complexes.

Définition[modifier | modifier le code]

Certains auteurs[1] définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel Mm,n(K) de matrices à m lignes et n colonnes à coefficients dans K.

Pour d'autres[2], une norme matricielle est seulement définie sur une algèbre Mn(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.

Exemples de normes matricielles[modifier | modifier le code]

Norme de Frobenius[modifier | modifier le code]

La norme de Frobenius sur [3] est celle qui dérive du produit scalaire ou hermitien standard sur cet espace, à savoir

,

désigne la matrice adjointe de et la trace. La norme de Frobenius est souvent notée

.

C'est la norme euclidienne ou hermitienne standard de la matrice considérée comme une collection de scalaires.

Si , le point de vue précédent permet d'en déduire le sous-différentiel de la norme de Frobenius, qui s'écrit en  :

.

En réalité, est différentiable sauf en zéro où est la boule unité pour la norme de Frobenius.

La norme de Frobenius n'est pas une norme subordonnée, parce que (on a noté l'opérateur identité sur ), mais c'est une norme sous-multiplicative : .

La norme de Frobenius peut s'étendre à un espace hilbertien (de dimension infinie) ; on parle alors de norme de Hilbert-Schmidt ou encore norme 2 de Schatten.

Normes d'opérateur[modifier | modifier le code]

On peut aussi voir une matrice A ∈ Mm,n(K) comme un opérateur linéaire de Kn dans Km et lui associer différents types de normes d'opérateur, à partir des normes utilisées sur Kn et Km. Par exemple, si l'on munit Km de la norme p et Kn de la norme q (avec p, q[1, ∞]), on obtient la norme d'opérateur

.

En particulier, on note parfois

,

que l'on appelle parfois la norme spectrale ou encore norme de Schatten.

Norme nucléaire[modifier | modifier le code]

La norme duale de la norme spectrale pour le produit scalaire ou hermitien standard de Mm,n(K), notée et définie par

,

porte différents noms : norme nucléaire ou norme de Ky Fan ou encore norme 1 de Schatten.

Normes de Schatten[modifier | modifier le code]

La norme p de Schatten (de), due à Robert Schatten, est définie en A ∈ Mm,n(K) par

,

est le vecteur des valeurs singulières de . Ces normes ont un lien avec les normes précédentes, puisque, quel que soit A ∈ Mm,n(K), on a[4],[5]

On déduit du lien entre les normes matricielles et les normes vectorielles de , et les inégalités sur ces normes, que pour tout A ∈ Mm,n(K) :

désigne le rang de .

Ces inégalités montrent que le rang est minoré par la norme nucléaire sur la boule unité . Plus précisément, on peut montrer que la plus grande fonction convexe fermée qui minore le rang sur est la restriction à cette boule de la norme nucléaire.

Lorsque K est le corps des réels, cela revient, en notant l'indicatrice de , à dire que la biconjuguée de la fonction est la fonction [6],[7]. Sans restriction du rang à un ensemble, on obtient , une identité de peu d'utilité.

Propriétés[modifier | modifier le code]

  • L'espace Mn(K), muni d'une norme sous-multiplicative (comme une norme d'opérateur ║∙║p,p), est un exemple d'algèbre de Banach.
  • Pour toute norme N sur Mn(K), l'application bilinéaire (A, B) ↦ AB étant continue (on est en dimension finie), on est assuré de l'existence d'une constante k > 0 telle que.Par suite, la norme kN est sous-multiplicative. Toute norme sur Mn(K) est donc proportionnelle à une norme d'algèbre.

Notes et références[modifier | modifier le code]

  1. A. Quarteroni, R. Sacco et F. Saleri, Méthodes Numériques: Algorithmes, analyse et applications, Springer, (ISBN 978-8-84700495-5, lire en ligne), p. 22.
  2. M. Ghil et J. Roux, Mathématiques Appliquées aux sciences de la Vie et de la Planète : Cours et exercices corrigés, Dunod, (ISBN 978-2-10056033-2, lire en ligne), p. 50.
  3. (en) Are Hjørungnes, Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications, CUP, (lire en ligne), p. 121.
  4. (en) Terence Tao, Topics in Random Matrix Theory, coll. « GSM (en) » (no 132), (lire en ligne), p. 47.
  5. (en) B. Recht, M. Fazel et P. Parrilo, « Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization », SIAM Review, vol. 53,‎ , p. 471-501 (DOI 10.1137/070697835).
  6. (en) M. Fazel, Matrix rank minimization with applications : PhD thesis, Stanford (Californie), Department of Electrical Engineering, université Stanford, .
  7. Cette propriété intervient dans les problèmes où l'on cherche à obtenir des objets parcimonieux par minimisation du rang (en compression d'images par exemple). Le rang étant une fonction à valeurs entières, donc difficile à minimiser, on préfère parfois considérer l'approximation convexe du problème qui consiste à y minimiser la norme nucléaire.