Algèbre de Banach

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Algèbre (homonymie).

En mathématiques, l'algèbre de Banach est une des structures fondamentales de l'analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892-1945).

Définition[modifier | modifier le code]

Définition — Une algèbre de Banach sur le corps K = ℝ ou ℂ est une K-algèbre associative normée telle que l'espace vectoriel normé sous-jacent soit en outre un espace de Banach (c.-à-d. complet pour la norme).

On explicite cette définition : une algèbre de Banach A sur le corps K = ℝ ou ℂ est un espace vectoriel normé complet sur K (on note la norme) muni d'une loi interne notée multiplicativement, telle que quels que soient x, y, z éléments de A et élément de K :

  • (associativité) ;
  • , et (bilinéarité) ;
  • (sous-multiplicativité).

On parle d'algèbre de Banach commutative quand la loi produit est commutative.

Suivant les auteurs, la structure d'algèbre exige ou non la présence d'un élément unité[1] (nécessairement unique). Les termes algèbre unitaire et algèbre non unitaire permettent de différencier les structures. Dans une algèbre de Banach unitaire non nulle, l'élément unité peut toujours être supposé de norme 1, quitte à remplacer la norme par une certaine norme équivalente.

Exemples[modifier | modifier le code]

Propriétés des algèbres de Banach unitaires[modifier | modifier le code]

Soit A une algèbre de Banach unitaire, d'élément unité e.

Propriétés de l'application de passage à l'inverse[modifier | modifier le code]

Comme dans toute algèbre unitaire, les éléments inversibles de A forment un groupe. Tout élément e – u de la boule ouverte de centre e et de rayon 1 en fait partie, et son inverse peut être exprimé comme somme de la série géométrique de raison u, absolument convergente.

Il en résulte que le groupe G des éléments inversibles d'une algèbre de Banach unitaire est un ouvert.

L'application de passage à l'inverse est un homéomorphisme de G sur G, ce qui confère à G une structure de groupe topologique. Il s'agit même d'une application différentiable (infiniment, par récurrence), la différentielle au point x étant donnée par la même formule (et la même démonstration) que pour les matrices inversibles :

L'hypothèse de complétude est essentielle et ces résultats tombent en défaut dans les algèbres normées non complètes. Par exemple considérons l'algèbre ℝ[X] des polynômes à coefficients réels, munie de n'importe quelle norme d'algèbre. Le groupe des inversibles est ℝ* qui est inclus dans le sous-espace vectoriel strict ℝ de ℝ[X] et est donc d'intérieur vide ; il n'est donc pas ouvert. Ceci montre en particulier que ℝ[X] ne peut être muni d'une structure de ℝ-algèbre normée complète. D'ailleurs, d'après le théorème de Baire, un espace vectoriel normé de dimension dénombrable n'est jamais complet : voir le § « Complétude » de l'article sur les espaces vectoriels normés.

Idéaux et algèbre quotient[modifier | modifier le code]

Les idéaux maximaux d'une algèbre de Banach unitaire sont fermés.

Une algèbre de Banach unitaire complexe (non commutative a priori) dont tout élément non nul est inversible est isométriquement isomorphe au corps des nombres complexes (théorème de Gelfand-Mazur) ; en particulier, les idéaux maximaux des algèbres de Banach unitaires complexes sont des hyperplans fermés.

Notes[modifier | modifier le code]

  1. Dans le tome II de ses Éléments d'analyse, Jean Dieudonné impose l'existence d'un élément unité dans la définition d'une algèbre de Banach. Au contraire, N. Bourbaki ne le suppose pas[réf. souhaitée].
  2. De là découle la théorie des représentations des algèbres de Banach.

Articles connexes[modifier | modifier le code]