Morphologie mathématique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Morphologie.
Une forme (en bleu), sa dilatation morphologique (en vert), et son érosion morphologique (en jaune) par un élément structurant en forme de diamant.

La morphologie mathématique est une théorie et technique mathématique et informatique d'analyse de structures qui est liée avec l'algèbre, la théorie des treillis, la topologie et les probabilités.

Le développement de la morphologie mathématique est inspiré des problèmes de traitement d'images, domaine qui constitue son principal champ d'application. Elle fournit en particulier des outils de filtrage, segmentation, quantification et modélisation d'images. Elle est également utilisable en traitement du signal, par exemple pour filtrer les variations d'une mesure (physique, biologique) au cours du temps.

Sommaire

Aperçu général[modifier | modifier le code]

Une des idées de base de la morphologie mathématique est d'étudier ou de traiter un ensemble à l'aide d'un autre ensemble, appelé élément structurant, qui sert de sonde. À chaque position de l'élément structurant, on regarde s'il touche ou s'il est inclus dans l'ensemble initial. En fonction de la réponse, on construit un ensemble de sortie. On obtient ainsi des opérateurs de base qui sont relativement intuitifs.

Des propriétés que l'on retrouve souvent dans les opérateurs morphologiques sont :

Ceci implique en particulier une perte d'information ; bien utilisés, ces opérateurs permettent d'éliminer des structures ne respectant pas certains critères, comme de largeur ou de volume.

La morphologie mathématique s'intéresse aussi aux ensembles et aux fonctions aléatoires.

Le principal domaine d'application de la morphologie mathématique est le traitement d'images. Elle fournit, en particulier, des outils de filtrage, de segmentation et de quantification. Depuis son apparition, en 1964, elle connaît un succès grandissant et désormais contribue à garnir la boite à outils de tout traiteur d'images.

Bref historique[modifier | modifier le code]

La morphologie mathématique a été inventée en 1964 par Georges Matheron et Jean Serra dans les laboratoires de MINES ParisTech. Son développement a toujours été fortement motivé par des applications industrielles. Dans un premier temps, il s'est agi de répondre à des problèmes dans le domaine de l'exploitation minière, mais très vite ses champs d'applications se sont diversifiés : biologie, imagerie médicale, sciences des matériaux, vision industrielle, multimédia, télédétection et géophysique constituent quelques exemples de domaines dans lesquels la morphologie mathématique a apporté une contribution importante.

La morphologie mathématique reste un domaine actif de recherche. En témoignent les nombreuses publications scientifiques sur le sujet, ainsi que les symposiums internationaux sur la morphologie mathématique qui ont lieu tous les deux ou trois ans.

Quelques exemples de thèmes de recherche actuels :

  • ligne de partage des eaux : parallélisation, approche topologique, hiérarchisation ;
  • extension de la morphologie mathématique à des fonctions vectorielles (images en couleurs, images multi-spectrales, etc.).

Opérateurs de base[modifier | modifier le code]

La morphologie mathématique peut être développée dans le cadre abstrait de la théorie des treillis. Cependant, une présentation plus pratique, visant un utilisateur potentiel d'outils de traitement d'images, plutôt qu'un mathématicien, est ici adoptée.

Cas ensembliste[modifier | modifier le code]

Plaçons-nous dans , souvent utilisé comme modélisation du support des images binaires à deux dimensions, même si tout ce qui est présenté dans cette section reste valable dans , où est un entier strictement positif. Soit un sous-ensemble de , appelé élément structurant. Si est un élément de , alors nous noterons l'ensemble translaté de  :

L'élément structurant joue en quelque sorte le rôle de modèle local, ou de sonde. Il est promené partout sur l'image à traiter, et à chaque position on étudie sa relation avec l'image binaire, considérée comme un ensemble. Ces relations peuvent être du type « est inclus dans l'ensemble », ou « touche l'ensemble », par exemple.

Les éléments structurants les plus classiquement utilisés sont la croix, constituée de l'origine et des quatre points les plus proches, et le carré, constitué de l'origine et des huit points les plus proches. Ces deux éléments structurants correspondent respectivement à deux définitions possibles du voisinage ou de la connexité de l'image.

On introduit aussi le symétrique d'un ensemble, noté  :

Si est symétrique, on a .

Dilatation et érosion[modifier | modifier le code]

Soit un sous-ensemble de . La dilatation morphologique avec l'élément structurant est définie comme la somme de Minkowski[1]:

Une autre formulation plus intuitive est :

La dilatation morphologique n'est, en général, pas inversible. L'opération qui en quelque sorte tente de produire l'inverse de la dilatation est l'érosion morphologique:

La dilatation et l'érosion sont les opérateurs de base de la morphologie mathématique. Pratiquement tous les autres peuvent être définis à l'aide de ceux-ci, en utilisant des compositions de fonctions et des opérations ensemblistes.

Transformation en tout ou rien[modifier | modifier le code]

On peut aussi prendre deux éléments structurants et pour définir des transformations. Si on demande en chaque point à d'être à l'extérieur de l'ensemble et à à l'intérieur on obtient la transformation en tout ou rien (hit or miss transform en anglais) : désigne le complémentaire de l'ensemble . Cette transformation permet de détecter certaines configurations précises de pixels. En ajoutant le résultat de la transformation à l'ensemble initial on obtient un épaississement : en enlevant le résultat de l'ensemble initial on obtient un amincissement :

En prenant des suites d'amincissements, on peut réduire progressivement l'ensemble initial (comme si on l'épluchait). De cette façon on peut calculer différents types de squelettes, dont des squelettes homotopiques.

Ouverture et fermeture[modifier | modifier le code]

La composition d'une dilatation morphologique avec l'érosion par le même élément structurant ne produit pas, en général, l'identité, mais deux autres opérateurs morphologiques, l'ouverture morphologique : et la fermeture morphologique :

L'ouverture peut être caractérisée géométriquement: elle donne l'union de tous les inclus dans . Ainsi, la forme de l'élément structurant permet de choisir les structures qui peuvent le contenir.

La fermeture est le dual de l'ouverture : la fermeture du complémentaire d'un ensemble est égale au complémentaire de l'ouverture de cet ensemble.

La fermeture et l'ouverture sont des opérations croissantes et idempotentes, deux propriétés qui définissent les filtres morphologiques. La fermeture est extensive (), et l'ouverture est anti-extensive().

Extension aux fonctions[modifier | modifier le code]

Une image à niveaux de gris peut être modélisée comme une fonction de dans . Soit une fonction appartenant à cet ensemble. On a alors :

L'ouverture et la fermeture de fonctions s'obtiennent comme dans le cas ensembliste :

L'ouverture et la fermeture morphologiques constituent déjà des outils intéressants de filtrage d'images. Cependant, ils peuvent modifier le contour des objets, propriété qui peut être malvenue. Les opérateurs par reconstruction et plus généralement les nivellements, introduits plus loin, permettent de pallier cet inconvénient.

Épaississements et amincissements ne sont pas, en général, des opérateurs croissants. Par conséquent, leur application aux fonctions (en pratique, aux images à niveaux de gris) n'est pas triviale. Plusieurs extensions ont été proposées dans la littérature.

Exemple d'utilisation : détection de contours[modifier | modifier le code]

La détection de contours représente une tâche importante en traitement d'images. La morphologie mathématique propose des outils non-linéaires de détection de contours, comme le gradient et le laplacien morphologiques.

Le gradient morphologique, aussi appelé gradient de Beucher du nom de son inventeur, est défini par :

Il correspond, en quelque sorte, à la version morphologique du module du gradient euclidien.

Le laplacien morphologique est construit de façon analogue :

correspond à l'opérateur identité.

Opérateurs connexes, nivellements[modifier | modifier le code]

Segmentation[modifier | modifier le code]

Segmenter une image à niveaux de gris consiste à produire une partition du support de l'image, de façon que les régions de la partition correspondent avec les objets présents dans l'image.

Les filtres morphologiques constituent une aide précieuse dans un processus de segmentation. En particulier, les nivellements permettent de filtrer les images tout en préservant les contours importants, ce qui simplifie l'opération de segmentation proprement dite. Dans certains cas, un filtrage important peut de lui-même produire une partition pertinente. Mais l'outil morphologique le plus connu en segmentation d'images est la ligne de partage des eaux.

Il existe plusieurs algorithmes de segmentation par ligne de partage des eaux. L'idée de base consiste à simuler une inondation de l'image, vue comme un relief topographique où le niveau de gris correspond à l'altitude. Les frontières entre régions de la partition ont alors tendance à se placer sur les lignes de crête. Typiquement, on applique cet opérateur au gradient de l'image (norme du gradient euclidien, ou gradient morphologique) que l'on cherche à segmenter, et par conséquent les frontières se placent de façon privilégiée sur les lignes de gradient élevé.

Plusieurs algorithmes de calcul de ligne de partage des eaux ont une complexité linéaire en fonction du nombre de pixels de l'image, ce qui les place parmi les méthodes de segmentation les plus rapides.

Ensembles aléatoires[modifier | modifier le code]

Quantification : Paramètres de base[modifier | modifier le code]

À l’origine la morphologie mathématique a été conçue pour traiter et analyser des images de matériaux ou images biologiques afin d’en extraire des informations quantifiées sous forme de paramètres ou de fonctions. Ici, on se limitera aux images 2D définies dans l’espace et aux sous-espaces. Dans ce cas l’espace est représenté par une grille de points. Deux cas sont envisagés: la grille carrée (pavage carré) et la grille triangulaire (pavage hexagonal). En ce qui concerne les paramètres, on sait qu’ils peuvent être obtenus à partir de la caractéristique d’Euler-Poincaré ou nombre de connexité des différents espaces, notés pour l’espace .

Les nombres de connexité dans l’espace discret[modifier | modifier le code]

Espace [modifier | modifier le code]

Cet espace correspond au réseau de points associés aux pixels.Sur l’image binaire, est égal au nombre de pixel à 1.

Espace [modifier | modifier le code]

Les droites utilisables dans correspondent à des pixels alignés. Les extrémités de segments de ces droites coupant correspondent (en sortie) à des transitions de pixel de type 1 0. L’image binaire associée est obtenue par une transformation en tout ou rien. D'un point de vue pratique cela revient à vérifier, pour chaque pixel , la configuration de voisinage . Les éléments 1 de la configuration sont relatifs à l’ensemble et ceux à 0 au complémentaire. On aura donc :Pour l'ensemble : Pour la mesure :

Les éléments structurants dans les différents pavages sont :

  • En pavage hexagonal dans la direction 0 : .

(Les autres orientations à 60° et 120° sont obtenues par rotation de la configuration.)

  • En pavage carré dans la direction 0 : .

(Les autres orientations à 45°, 90°, 135° sont obtenues par rotation de la configuration.)

Espace [modifier | modifier le code]

Rappelons que correspond au nombre de composantes connexes diminué du nombre de trous qu’elles contiennent.

  • Pavage hexagonal

Pour déterminer ce nombre avec le pavage triangulaire, on utilise la relation d’Euler : En pavage hexagonal s représentant le nombre de sommets (pixels à 1), c le nombre de côtés de type 1-1 (à une rotation près) et f le nombre de triangles ayant les 3 sommets à 1. Un calcul élémentaire sur toutes les combinaisons donne le résultat suivant :Pour les ensembles : et Pour la mesure :

Les éléments structurants dans les différents pavages sont :

et .

  • En pavage carré (8 connexité) on fait le même raisonnement ce qui donne les éléments structurants :

et .

Les paramètres métriques de base associés[modifier | modifier le code]

Comme pour les nombres de connexité, les paramètres métriques de base doivent vérifier les conditions de Hugo Hadwiger. L’ensemble doit être un ensemble aléatoire stationnaire et constitué d’une union finie de convexes. La mesure doit avoir les propriétés suivantes :

  • Invariante par translation de  :
  • Compatible avec homothéties (agrandissement ) :
  • C-additive :
  • Continue ou semi continue

Dans [modifier | modifier le code]

Le paramètre métrique est la longueur totale de l’ensemble notée .Elle se calcule à partir de et la taille du pixel . On a en effet :

Dans [modifier | modifier le code]

Ces paramètres métriques sont:

  • L’aire de l’ensemble notée

Elle se calcule à partir de et l’aire du pixel . On a en effet :

  • Le périmètre de l’ensemble noté

Pour obtenir ce périmètre, on va utiliser la relation de Cauchy (géométrie intégrale) qui relie la variation diamétrale d'un ensemble à son périmètre : avec taille du pixel. On notera que l'estimation de ce périmètre à un aspect statistique. Le nombre de connexité doit être estimé dans plusieurs directions.

Vers l'espace [modifier | modifier le code]

La géométrie intégrale permet également d’accéder à des paramètres de en utilisant les nombres de connexité des espaces inférieures.

  • Ainsi, la surface de la frontière notée est obtenue à partir du nombre de connexité par la relation de Crofton : est la projection de sur le plan perpendiculaire à la direction et l'aire associée à la ligne .
  • L'intégrale de courbure moyenne est estimée à partir de la variation diamétrale dans notée en utilisant la relation de Meusnier:Cette variation diamétrale est reliée au nombre de connexité dans par la relation :Ce qui donne finalement : représente la distance entre 2 plans.

De l’analyse globale à l’analyse locale (stéréologie)[modifier | modifier le code]

Les images destinées aux études scientifiques sont souvent obtenues à partir d’un microscope dont le champ est plus petit que l’ensemble à analyser. Dans ce cas, on dit que l’analyse est locale par opposition à l’analyse globale où l’ensemble est totalement visible.

Les paramètres globaux précédemment définis doivent être transformés en paramètres locaux ramenés à l’unité d’espace.

Paramètres locaux de l'espace [modifier | modifier le code]

  • L’unique paramètre est la fraction de points :

Paramètres locaux de l'espace [modifier | modifier le code]

  • Fraction linéique :Dans ce contexte statistique, on démontre aisément que l'estimation de la fraction linéique est égale à la fraction de points :
  • Nombre de connexité par unité de longueur:

Paramètres locaux de l'espace [modifier | modifier le code]

  • Fraction surfacique :On a également :
  • Périmètre spécifique :En utilisant la relation de Cauchy, on obtient :
  • Nombre de connexité par unité de surface :

Paramètres locaux de l'espace [modifier | modifier le code]

  • Fraction volumique :Ici encore, on a :
  • Surface spécifique :En utilisant la relation de Crofton, on a :
  • Intégrale de courbure moyenne par unité de volume :L'intégrale de courbure moyenne peut être estimée à partir du nombre de connexité dans selon la relation de Meusnier :
  • Nombre de connexité par unité de volume :Ce paramètre de nature topologique n'est pas accessible à partir des espaces de dimension inférieure.


Quantification 2 : Granulométrie et dispersion[modifier | modifier le code]

Les paramètres stéréologiques sont des paramètres moyens. De plus, ils ne sont pas nombreux. On conçoit aisément qu’ils soient insuffisants pour donner une description assez complète de la structure. Si l’on accepte de perdre l’aspect stéréologique, la morphologie mathématique permet d’obtenir de nombreuses informations quantitatives supplémentaires. Cette quantification dépend souvent d’un paramètre de taille associé aux transformations d’images. La quantification conduira à une opération de tri dont le dénombrement ou la mesure conduira à une fonction granulométrique. La dispersion d’un ensemble dans un autre est également quelque chose d’important à connaître. La stéréologie ne fournit qu’un paramètre dérivé qui est loin de répondre à la question.

L’analyse granulométrique[modifier | modifier le code]

Axiomes de l’analyse granulométrique (Georges Matheron)[modifier | modifier le code]

La méthode de tri doit vérifier les règles suivantes :

  • La méthode de tri doit vérifier la propriété de croissance
  • La méthode de tri est anti-extensive
  • Dans le cas de deux tris successifs, c’est le paramètre le plus grand qui l’emporte. Le résultat est indépendant de l’ordre des opérateurs. Cela s’écrit : Cette dernière condition va réduire considérablement le nombre des opérateurs candidats.

Les fonctions granulométriques[modifier | modifier le code]

On distingue les granulométries en nombre et les granulométries en mesure.

  • Si le tri granulométrique consiste à ne conserver que tout ce qui est plus petit que , alors la fonction de distribution granulométrique en nombre sera définie par :
  • Au lieu de compter les objets, on peut reporter une mesure qui leur est associée (la masse dans un tamis).On obtient alors une fonction de distribution granulométrique en mesure définie par : En analyse d’image la mesure est le volume dans , l’aire pour et la longueur pour .

Analyse granulométrique individuelle[modifier | modifier le code]

Ensemble de particules individuelles (jaune)

Ce type d’analyse n’est possible que si l’ensemble à analyser est constitué d’une collection d’objets totalement disjoints. Chaque objet est isolé puis mesuré selon un critère de taille (aire, périmètre diamètre de Féret…). Le résultat de la mesure permet de mettre cet objet dans une classe de taille.

  • Les problèmes du masque de mesure

Pour faire les mesures qu’on vient de citer, il est nécessaire que l’objet soit totalement inclus dans le champ de mesures. On doit donc éliminer ceux qui coupent le bord du champ. On a vu que cela est facilement réalisé par morphologie mathématique . Cependant, on a d’autant plus de chance d’éliminer un objet que sa taille est grande. Cela va introduire un biais dans l’analyse granulométrique. Pour résoudre ce problème, il faut pouvoir connaître la probabilité qu’un objet a d’être inclus dans le champ . Or, on a vu que donne l’ensemble des points de est totalement inclus dans .

Particule individuelle et rectangle circonscrit associé

Ce raisonnement peut être transcrit pour résoudre notre problème en cherchant à éroder le masque rectangulaire par . Il est facile de voir qu’on obtiendra rigoureusement le même résultat si on remplace par le rectangle circonscrit minimum de même orientation que . La probabilité d’inclusion se calcule alors facilement : Dans cette expression, représente le coté horizontal et le coté vertical du champ (indice Z) ou du rectangle (indice R). Le biais sera alors corrigé en incrémentant la classe de taille non pas de 1 mais de . Cette méthode corrective a été proposée par Lantuéjoul.

Analyse granulométrique par ouverture avec un élément structurant à 2 dimensions[modifier | modifier le code]

Le milieu complémentaire des objets de la figure 1 ne peut pas être traité par cette méthode car la notion d’objet individuel n’a plus de sens. Cependant les axiomes de Matheron se vérifient lorsque l’ouverture est faite avec un élément structurant convexe. En effet, un élément structurant convexe permet de construire une famille de même nature dont tous les membres se déduisent de l’élément de taille 1 par un rapport d’homothétie de taille . Ce type de granulométrie est une granulométrie en mesure car l’ouverture ne possède pas de bonnes propriétés topologiques (un objet peut être scindé en deux par ouverture). Pour une image définie dans , la seule mesure utilisée est l’aire de l’ensemble ouvert.

En analyse locale, il faut tenir compte du masque de mesure et donc travailler dans un masque érodé, on a donc : Il existe un cas particulier où la granulométrie peut être établie en nombre. C’est lorsque l’ensemble est constitué d’objets convexes disjoints. Dans ce cas, on aura :

Analyse granulométrique par ouverture avec un élément structurant linéaire[modifier | modifier le code]

L’élément structurant linéaire est traditionnellement noté . Les règles s’appliquent de la même manière que pour l’ouverture bidimensionnelle mais ici les granulométries en mesure et en nombre peuvent toujours se calculer puisque l’intersection d’un ensemble par une droite donne toujours des segments de droites convexes par définition. Les granulométries correspondantes sont données par les expressions suivantes pour les granulométries en mesure et les granulométries en nombre :

  • Granulométries en mesure
  • Granulométries en nombre

La fonction [modifier | modifier le code]

En fait, il n’est pas nécessaire de passer par l’ouverture pour obtenir ces granulométries, mais que l’on peut s’arrêter à l’érosion qui donne la fonction . Cette fonction est définie par :

Cette fonction possède un certain nombre de propriétés remarquables :

  • La valeur à l’origine n’est autre que la teneur de la phase.
  • La fonction décroît de manière monotone.
  • La dérivée à l’origine, dans la direction , est égale, au signe près, au nombre de connexité spécifique pour cette même direction.
  • La fonction possède des propriétés granulométriques.

D’après les relations précédentes, on a immédiatement : et

  • La fonction a une propriété stéréologique avec la ‘’’notion d’étoile’’’.
Étoile bi et tridimensionnelle[modifier | modifier le code]

Supposons que l’ensemble soit transparent et que le complémentaire soit opaque. À partir d’un point appartenant à , on peut définir un domaine , constitué par tous les points y visibles de x. sera appelé ’’’ l’étoile de dimension 2’’’ associée au point x.

Illustration de la fonction étoile de X dans R2 (X : jaune et cyan, St(X) : jaune)

En recommençant la même opération pour tous les points de , on peut définir dans une étoile moyenne caractérisée par son aire. Cela s’écrit : Considérons l’élément de surface orienté selon . Cet élément appartient à l’étoile et aura pour probabilité conditionnelle le rapport : En utilisant la définition et en supposant le milieu isotrope, on a : Le même raisonnement peut être fait pour . L’étoile dans est définie par : Ce qui donne dans le cas isotrope : L’étoile dans définit un volume moyen en mesure et dans , une aire moyenne en mesure. Si est une union de convexes disjoints, l’étoile représente un ensemble convexe moyen. Puisqu’elle est mesurable à partir de , l’étoile a des propriétés stéréologiques.

Analyse de la dispersion[modifier | modifier le code]

L’étude de la dispersion suppose au moins un ensemble et son complémentaire, tous les deux non vide. Les paramètres stéréologiques qui ont été définis ne portent que sur un seul ensemble, l’analyse granulométrique également. En morphologie mathématique, il existe une fonction qui permet effectivement de tester l’état de dispersion d’un ensemble dans un autre. Cette fonction s’appelle la ‘’’fonction covariance’’’. Elle correspond à la mesure de l’érodé par un élément structurant constitué de deux points distants de h. Comme l’érosion est construite à partir de la soustraction de Minkowski, il est facile d’obtenir le résultat de l’érosion par h puisque cet élément structurant ne contient que 2 points distants de h. Pour cela, il suffit de translater l’image et de prendre l’intersection avec le translaté.

Illustration de l'érosion par un bipoint h obtenue par translation et intersection

On aura donc :

La covariance simple[modifier | modifier le code]

La covariance est surtout utilisée dans le cas local. Dans ce cas, on définit la fonction covariance dans un masque de mesure Z par :

Propriétés de la covariance[modifier | modifier le code]

Comme la fonction , la fonction possède un certain nombre de propriétés. Ainsi, on a :

  • La valeur à l’origine n’est autre que la teneur de la phase.
  • La dérivée à l’origine.
  • Entre l’origine et l’infini, la covariance est toujours inférieure à la valeur à l’origine. Les variations dans ce domaine dépendent de l’état de dispersion. En particulier, la présence de périodicité se traduit par des oscillations de la covariance et des paliers intermédiaires. Des paliers intermédiaires apparaissent pour des superpositions de structures à des échelles différentes. Des exemples sont donnés dans la section suivante.
  • Dans le cas d’un ensemble aléatoire stationnaire, la valeur à l’infini correspond à la probabilité pour que 2 points indépendants tombent dans . C’est donc égal au carré de la teneur : Cette valeur est atteinte de manière asymptotique.
  • Comme la covariance a un caractère directionnel, elle renseigne sur l’anisotropie de l’ensemble .
Exemples[modifier | modifier le code]

À titre d’exemple, nous prenons des cas limites :

  • Un ensemble 2D isotrope (schéma booléen).

Dans l’exemple choisi la décroissance de la covariance se poursuit jusqu’à la valeur asymptotique. Comme l’analyse n’a été conduite que sur un champ, la concordance entre l’asymptote théorique et l’asymptote expérimentale n’est pas parfaite. Le léger passage par un minimum montre un petit effet de répulsion entre les disques.

  • Un ensemble anisotrope composé de lamelles irrégulières (image d’un eutectique métallique).

L’aspect périodique de la structure se traduit par des oscillations de la courbe de covariance. Le premier minima correspond à une épaisseur moyenne d’une lamelle et le premier maximum à l’épaisseur moyenne du couple lamelle-complémentaire.

  • Un ensemble constitué d’amas.

La covariance est plus complexe à interpréter mais on peut estimer ma distance moyenne entre amas.

Notes[modifier | modifier le code]

  1. La dilation est aussi souvent définie en utilisant le symétrique de l'élément structurant : On gagne alors la dualité entre érosion et dilatation, mais on perd l'adjonction. Il faut alors modifier les définitions de l'ouverture et de la fermeture morphologiques en conséquence. Lorsque l'élément structurant est symétrique, cette distinction n'a pas d'importance.

Bibliographie[modifier | modifier le code]

En français[modifier | modifier le code]

  • Georges Matheron, Éléments pour une théorie des milieux poreux, Masson, Paris, 1967.
  • Michel Schmitt et Juliette Mattioli, Morphologie mathématique, Masson, Paris, 1993, (ISBN 2-225-84385-6) .
  • Laurent Najman et Hugues Talbot (dir.), Morphologie mathématique, 1 : Approches déterministes, Hermès - Lavoisier, Paris, 2008, (ISBN 978-2746218413) .
  • Laurent Najman et Hugues Talbot (dir.), Morphologie mathématique, 2 : Estimation, choix et mise en œuvre, Hermès - Lavoisier, 2010.
  • Jean Marc Chassery, Annick Montanvert, Géométrie discrète en analyse d'images, Hermès, 1991, (ISBN 2-86601-271-2).
  • H. Poincaré Calcul des probabilités. Carré, Paris, 1912.
  • Michel Coster, Jean Louis Chermant, Précis d'analyse d'images, Presse du CNRS, 1989, (ISBN 2-87682-020-X) .
  • Robert T. DeHoff, Frederick N. Rhines, Microscopie Quantitative, (traduit par Jean Montuelle), Masson 1972.

En anglais[modifier | modifier le code]

  • Georges Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.
  • Georges Matheron, Estimating and Choosing, Springer–Verlag Berlin, Heidelberg, 1989.
  • Jean Serra, Image Analysis and Mathematical Morphology, vol. 1, Academic Press, Londres, 1982, (ISBN 0-12-637242-X) .
  • Jean Serra (dir.), Image Analysis and Mathematical Morphology, vol. 2 : Theoretical Advances, Academic Press, Londres, 1988, (ISBN 0-12-637241-1) .
  • Charles R. Giardina et Edward R. Dougherty, Morphological Methods in Image and Signal Procesing, Prentice-Hall, New Jersey, 1988.
  • H.J.A.M Heijmans, Morphological image operators, Academic Press, coll. "Advances in Electronics and Electron Physics", Boston 1994.
  • Pierre Soille, Morphological image analysis, Springer-Verlag Berlin, Heidelberg, 1999 (2e édition 2003).
  • Gonzalez R.C., Woods R.E., Digital Image Processing, 3e éd., Prentice Hall, 2008.
  • Goutsias J., Batman S., Morphological Methods for Biomedical Image Analysis, Handbook of Medical Imaging, volume 2 : Medical Image Processing and Analysis, M. Sonka & J.M. Fitzpatrick (eds.), SPIE Optical Engineering Press, 2000, p. 175-272.
  • Laurent Najman and Hugues Talbot (Eds).Mathematical morphology: from theory to applications, ISTE-Wiley, (520 pp.) June 2010, (ISBN 978-1-84821-215-2) .
  • Henri Poincaré, Papers on Topology: Analysis Situs and its Five Supplements, (traduit par John Stillwell), American Mathematical Society, Providence, R. I., 2010, (ISBN 978-0821852347) .
  • E.E. Underwood, Quantitative Stereology, Addison Wesley, 1970.
  • Luis A. Santaló, Integral Geometry and Geometric Probability 2nd édition, Cambridge Mathematical Library, 2004, (ISBN 978-0521523448) .
  • Ewald R. Weibel, Stereological Methods. Vol. 1: Practical methods for biological morphometry , Academic Press, 1979, (ISBN 978-0127422015) .
  • C. Lantuéjoul. On the estimation of mean values in individual analysis of particles, Microscopica Acta, 1980, 5, 266-273.

En Allemand[modifier | modifier le code]

  • Hugo Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin u. a. 1957, (ISBN 3-540-02151-5) .

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]