Méthode de Tschirnhaus

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La méthode de Tschirnhaus, imaginée et mise au point par Ehrenfried Walther von Tschirnhaus, est une tentative de résoudre le point clé de la théorie des équations à savoir trouver une méthode générale de résolution de l'équation polynomiale. Cette méthode tente de ramener l'équation que l'on veut résoudre à d'autres équations de degré moins élevé. Cette méthode échoue de façon certaine pour les équations de degré supérieur ou égal à cinq qui ont un groupe de Galois non résoluble.

Principe de la méthode[modifier | modifier le code]

Considérons une équation de degré n :

 \qquad a_n x^n + a_{n - 1} x^{n - 1} + \cdots + a_1 x + a_0 = 0

Le principe de la méthode consiste à faire un changement de variable en posant :

 \qquad y = b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1 x + b_0

Une transformation de ce type se nomme transformation de Tschirnhaus.

En éliminant x entre cette relation et l'équation à résoudre, on obtient une équation de degré n et d'inconnue y dont les coefficients dépendent de b_{n-1}, b_{n-2}, b_{n-3}, \ldots, b_1, b_0\,. On va alors essayer de déterminer b_{n-1}, b_{n-2}, b_{n-3}, \ldots, b_1, b_0\, de façon à obtenir une équation en y plus simple à résoudre, par exemple de la forme :

 \qquad y^n - c = 0

Pour cela, dans l'équation en y, on pose égal à 0, tous les coefficients des monômes de degré 1 à n-1. On obtient ainsi un système de n-1 équations à n inconnues b_{n-1}, b_{n-2}, b_{n-3}, \ldots, b_1, b_0\,. Ces valeurs, une fois obtenues, sont reportées dans la relation :

 \qquad y = b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1 x + b_0

Où y prendra successivement pour valeur l'une des n racines de c.

Nous nous sommes donc ramené à la résolution de n équations en x de degré n-1. Nous pouvons renouveler ainsi l'opération jusqu'à obtenir des équations de degré suffisamment bas pour pouvoir les résoudre.

Application à la résolution des équations cubiques[modifier | modifier le code]

Nous allons exposer la méthode sur l'exemple suivant :

 x^3+x-2=0 ~

Posons :

 y = ax^2+bx+c \qquad (*)~

Les deux équations précédentes se mettent sous la forme :

 \left\{\begin{matrix} x^3=2-x \\ y-c-bx=ax^2 \end{matrix}\right.

Nous devons éliminer x entre ces deux équations. Pour cela, nous remplaçons la première équation par le produit membre à membre de ces deux équations. Après simplification, nous obtenons :

 \left\{\begin{matrix} bx^2=ax+xy-cx-2a \\ y-c-bx=ax^2 \end{matrix}\right.

Cette façon de procéder permet de diminuer le degré de l'une des équations par rapport à x. Nous allons donc réitérer le processus jusqu'à ce que x ait disparu de l'une des équations. D'autre part, comme nous faisons des produits membre à membre, nous risquons d'introduire des solutions parasites. Il nous sera donc nécessaire à la fin de la résolution de vérifier que toutes les solutions trouvées vérifient bien l'équation à résoudre.

Après un nouveau produit membre à membre, nous obtenons :

 \left\{\begin{matrix} a^2x+axy-acx+b^2x=2a^2+by-bc \\ y-c-bx=ax^2 \end{matrix}\right.

Après un nouveau produit membre à membre en remplaçant cette fois la deuxième équation, nous obtenons :

 \left\{\begin{matrix} a^2x+axy-acx+b^2x=2a^2+by-bc \\ a^2y+ay^2-2acy+b^2y-a^2c+ac^2-b^2c=2a^3x+2abxy-2abcx+a^2bx+b^3x \end{matrix}\right.

Un dernier produit membre à membre nous donne après réduction des termes semblables et simplification par a2x :

 y^3+(2a-3c)y^2+(a^2-6ab-4ac+3c^2+b^2)y=4a^3-6abc+2a^2b+2b^3+a^2c-2ac^2+c^3+b^2c \qquad (**) ~

Nous devons maintenant déterminer a, b, c de façon à ce que :

 \left\{\begin{matrix} 2a-3c=0 \\ a^2-6ab-4ac+3c^2+b^2=0 \end{matrix}\right.

En tirant c de la première équation et en reportant dans la deuxième équation, nous obtenons :

 \left\{\begin{matrix} 2a-3c=0 \\ a^2+18ab-3b^2=0 \end{matrix}\right.

Nous voyons alors que le rapport a/b est racine de l'équation :

 X^2+18X-3=0 ~

L'une des racines de cette équation étant :

 X=2\sqrt{21}-9=\frac{6\sqrt{21}-27}{3} ~

On peut en déduire pour a, b, c le choix des valeurs suivantes :

 \left\{\begin{matrix} a=6\sqrt{21}-27 \\ b=3 \\ c=4\sqrt{21}-18 \end{matrix}\right.

En reportant ces valeurs d'une part dans (*), on obtient :

 y = (6\sqrt{21}-27 )x^2+3x+4\sqrt{21}-18  \qquad (***)~

Et d'autre part dans (**), on obtient :

 y^3=73920\sqrt{21}-338688 ~

D’où l'on déduit les trois valeurs possibles de y :

 y_1=10\sqrt{21}-42 ~
 y_2= (10\sqrt{21}-42)e^{2i\pi/3} = (10\sqrt{21}-42)(-\frac{1}{2}+i\frac{\sqrt{3}}{2}) = 21-5\sqrt{21} + (15\sqrt{7}-21\sqrt{3})i ~
 y_3=(10\sqrt{21}-42)e^{-2i\pi/3} = (10\sqrt{21}-42)(-\frac{1}{2}-i\frac{\sqrt{3}}{2}) = 21-5\sqrt{21} - (15\sqrt{7}-21\sqrt{3})i~

Il nous suffit de reporter ces trois valeurs de y dans (***) pour obtenir successivement les trois équations du second degré suivantes :

 (6\sqrt{21}-27 )x^2+3x+4\sqrt{21}-18 = 10\sqrt{21}-42 ~
 (6\sqrt{21}-27 )x^2+3x+4\sqrt{21}-18 = 21-5\sqrt{21} + (15\sqrt{7}-21\sqrt{3})i ~
 (6\sqrt{21}-27 )x^2+3x+4\sqrt{21}-18 = 21-5\sqrt{21} - (15\sqrt{7}-21\sqrt{3})i ~

Qui se simplifient sous la forme :

 (2\sqrt{21}-9 )x^2+x+8-2\sqrt{21} = 0 ~
 (2\sqrt{21}-9 )x^2+x+3\sqrt{21}-13-(5\sqrt{7}-7\sqrt{3})i = 0 ~
 (2\sqrt{21}-9 )x^2+x+3\sqrt{21}-13+(5\sqrt{7}-7\sqrt{3})i = 0 ~

Il ne nous reste plus qu'à résoudre ces trois équations pour en déduire les valeurs possibles de x. Les trois discriminants de ces équations du second degré sont respectivement :

 \triangle_1 = 625-136\sqrt{21} = (17-4\sqrt{21})^2  ~
 \triangle_2 = 212\sqrt{21} - 971 - 4(87\sqrt{7}-133\sqrt{3})i = (10-2\sqrt{21}+14i\sqrt{3}-9i\sqrt{7})^2  ~
 \triangle_3 = 212\sqrt{21} - 971 + 4(87\sqrt{7}-133\sqrt{3})i = (10-2\sqrt{21}-14i\sqrt{3}+9i\sqrt{7})^2  ~

On en déduit respectivement les six valeurs possibles pour x :

 \frac{-12-2\sqrt{21}}{3}, 1 ,\frac{-1+i\sqrt{7}}{2}, \frac{-4\sqrt{21}-15-3i\sqrt{7}}{6},\frac{-1-i\sqrt{7}}{2}, \frac{-4\sqrt{21}-15+3i\sqrt{7}}{6}   ~

Comme nous avons fait des produits membre à membre au début, nous risquons d'avoir introduit des racines parasites. Nous devons donc vérifier que les valeurs obtenues pour x vérifient bien l'équation à résoudre. Nous constatons que seulement trois des six valeurs obtenues sont bien solution de l'équation. Ces valeurs sont :

x_1 = 1 ~
x_2 = \frac{-1+i\sqrt{7}}{2} ~
x_3 = \frac{-1-i\sqrt{7}}{2} ~

Méthode particulière pour les équations du quatrième degré[modifier | modifier le code]

Considérons l'équation générale du quatrième degré suivante :  \qquad a_4 x^4 + a_3 x^3 + a_2 x^2  + a_1 x + a_0 = 0

En divisant par a_4\, et en posant

 \qquad x = z - \frac{a_3}{4a_4}

on se ramène à une équation de la forme :

 \qquad z^4  +  c z^2 + d z+ e = 0

Considérons la transformation de Tschirnhaus suivante :

y = z^2 + pz + \frac{c}{2} ~

En éliminant z entre les deux relations précédentes, nous obtenons l'équation du quatrième degré en y suivante :

 y^4 + (cp^2-\frac{c^2}{2}+3dp+2e)y^2 + (dp^3+4ep^2-c^2p^2-2cdp-d^2)y + ep^4-\frac{cdp^3}{2}+\frac{c^3p^2}{4}-cep^2+\frac{c^2dp}{4}-dep+\frac{c^4}{16}-\frac{c^2e}{2}+\frac{cd^2}{2}+e^2 = 0 ~

Nous voyons alors que nous pouvons obtenir à ce niveau une équation bicarrée du quatrième degré si p vérifie la relation :

 dp^3+4ep^2-c^2p^2-2cdp-d^2 = 0~

C'est-à-dire si p est solution de l'équation du troisième degré:

 dx^3+(4e-c^2)x^2-2cdx-d^2 = 0~

Nous nous sommes donc ramené à la résolution d'une équation du troisième degré.

Prenons un exemple pour étudier de façon plus précise la méthode.

Soit à résoudre l'équation :

x^4 + 4x^3 + 3x^2 - 8x - 10 = 0 ~

Posons :

 x = z - 1 \qquad (*)~

En remplaçant dans l'équation, on obtient :

z^4 - 3z^2 - 6z - 2 = 0 ~

Considérons la transformation de Tschirnhaus :

y = z^2 + pz  - \frac{3}{2} ~

En éliminant z par des produits membre à membre successifs (voir paragraphe précédent) entre les deux relations précédentes, nous obtenons :

y^4 - (3p^2+18p+\frac{17}{2})y^2 - (6p^3+17p^2+36p+36)y - (2p^4+9p^3+\frac{51}{4}p^2+\frac{51}{2}p+\frac{575}{16})=0 ~

Si l'on veut que cette équation soit une équation bicarrée du quatrième degré, nous voyons que nous devons choisir p parmi les racines de l'équation :

6x^3+17x^2+36x+36=0 ~

Cette équation admet pour racine évidente :

x=-\frac{3}{2} ~

Nous choisirons donc :

p=-\frac{3}{2} ~

La transformation de Tschirnhaus envisagé est donc :

y = z^2 - \frac{3}{2}z - \frac{3}{2} ~

Et par élimination de z avec l'équation :

z^4 - 3z^2 - 6z - 2 = 0 ~

On obtient :

8y^4+94y^2-49=0 ~

En posant :

X = y^2 ~

On se ramène à l'équation du second degré :

8X^2+94X-49=0 ~

Qui a pour racines :

X_1 = \frac{1}{2} ~
X_2 = -\frac{49}{4} ~

D’où l'on déduit les quatre valeurs de y suivantes :

y_1 = \frac{1}{\sqrt{2}} ~
y_2 = -\frac{1}{\sqrt{2}} ~
y_3 = \frac{7i}{2} ~
y_4 = -\frac{7i}{2} ~

Ces quatre valeurs de y reportées dans la transformation de Tschirnhaus envisagée nous donnent quatre équations du second degré :

z^2 - \frac{3}{2}z - \frac{3}{2} = \frac{1}{\sqrt{2}} ~
z^2 - \frac{3}{2}z - \frac{3}{2} =-\frac{1}{\sqrt{2}} ~
z^2 - \frac{3}{2}z - \frac{3}{2} = \frac{7i}{2} ~
z^2 - \frac{3}{2}z - \frac{3}{2} = -\frac{7i}{2} ~

Qui se simplifient respectivement sous la forme :

2z^2 - 3z - 3 - \sqrt{2} = 0 ~
2z^2 - 3z - 3 + \sqrt{2} = 0 ~
2z^2 - 3z - 3 - 7i = 0 ~
2z^2 - 3z - 3 + 7i = 0 ~

Ces quatre équations ont respectivement comme discriminant :

 \triangle_1 = 33 + 8\sqrt{2} = (1+4\sqrt{2})^2 ~
 \triangle_2 = 33 - 8\sqrt{2} = (1-4\sqrt{2})^2 ~
 \triangle_3 = 33 + 56i = (7+4i)^2 ~
 \triangle_4 = 33 - 56i = (7-4i)^2 ~

Chacune des quatre équations du second degré fournissant deux racines, on en déduit huit valeurs possibles pour z :

1+\sqrt{2},\frac{1}{2}-\sqrt{2},1-\sqrt{2},\frac{1}{2}+\sqrt{2},\frac{5}{2}+i,-1-i,\frac{5}{2}-i,-1+i ~

Seules les quatre valeurs :

z_1 = 1+\sqrt{2} ~
z_2 = 1-\sqrt{2} ~
z_3 = -1-i ~
z_4 = -1+i ~

Vérifie l'équation :

z^4 - 3z^2 - 6z - 2 = 0 ~

Les autres valeurs sont des racines parasites apparues lors des produits membre à membre effectués pour éliminer z plus haut.

En portant les quatre valeurs valides de z dans (*), on obtient :

x_1 = \sqrt{2} ~
x_2 = -\sqrt{2} ~
x_3 = -2-i ~
x_4 = -2+i ~

Qui sont les quatre racines de l'équation que l'on s'était donné de résoudre.

Équation du cinquième degré[modifier | modifier le code]

Voir à ce propos l'article Radical de Bring.


Remarque historique[modifier | modifier le code]

Cette méthode est la première méthode générale de résolution des équations à avoir été publiée. Sa publication remonte à 1683.

Autres méthodes de résolution d'équations[modifier | modifier le code]