Déformation plastique

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 14 août 2019 à 11:20 et modifiée en dernier par Skouratov (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Courbe de traction d'un essai de traction interrompu dans le domaine plastique : déformation élastique εe et déformation plastique εp.
Indentation plastique d'un blindage par des projectiles.
Résultat d'une déformation plastique sur un ballon de baudruche.

La déformation plastique est la déformation irréversible d'un objet ; elle se produit par un réarrangement de la position relative des atomes, ou plus généralement des éléments constitutifs du matériau.

Lorsqu'une pièce est sollicitée (on la tire, on la comprime, on la tordetc.), celle-ci commence par se déformer de manière réversible (déformation élastique), c'est-à-dire que ses dimensions changent, mais elle reprend sa forme initiale lorsque la sollicitation s'arrête. Certains matériaux, dits fragiles, cassent dans ce mode de déformation si la sollicitation est trop forte.

Pour les matériaux dits ductiles, une augmentation suffisante de la sollicitation entraîne une déformation définitive ; à l'arrêt de la sollicitation, la pièce reste déformée. C'est par exemple le cas d'une petite cuillère qui a été tordue : on ne pourra jamais la redresser pour lui faire reprendre sa forme initiale.

Applications pratiques

La déformation plastique permet la mise en forme de pièces (forgeage, martelage, tréfilage, filage, laminage, estampage, emboutissageetc.). Elle permet aussi d'absorber l'énergie d'un choc et augmente la capacité de résistance à la rupture et la protection des personnes, comme dans le cas de la tôle d'une voiture ou d'un mousqueton d'escalade.

En résistance des matériaux, il peut être nécessaire de quantifier la déformation plastique résultant d'une sollicitation. En effet, dans certains domaines, on interdit toute déformation plastique, on s'attache alors à ce qu'à aucun moment la contrainte ne dépasse la limite d'élasticité ; pour cela, on applique souvent un coefficient de sécurité. Mais si cette manière de concevoir est prudente, elle donne en revanche des mécanismes et des structures lourds. Si l'environnement et le comportement du système sont maîtrisés, on peut admettre une déformation plastique lors de certaines phases de vie du système, mais il faut pouvoir quantifier ces déformations afin de s'assurer que cela ne compromet pas le fonctionnement du système.

Essai de traction

Sur un essai de traction simple (uniaxial), la déformation plastique produit un allongement irréversible de l'éprouvette. Sur la courbe contrainte-déformation, la partie élastique correspond à la partie linéaire (droite) de la courbe, le domaine plastique correspond à l'infléchissement de cette courbe. La limite entre les deux domaine définit la limite d'élasticité notée ici Re.

Si l'essai en cours est arrêté (avant striction et rupture), l'éprouvette se rétracte élastiquement d'une valeur εe, mais conserve une déformation résiduelle εp, qui constitue la déformation plastique.

Mécanisme de la déformation plastique

Dans les métaux, la déformation plastique se produit par un glissement des plans atomiques les uns sur les autres, à la manière des cartes à jouer d'un paquet, et ce glissement de plans atomiques se fait grâce au déplacement de défauts linéaires appelés « dislocations ». À un stade avancé de la déformation, les dislocations permettant ces glissements se localisent dans certaines zones de la pièce déformée, préférentiellement les zones de concentration de contraintes. La localisation se traduit par la formation de bandes dites « bandes de Hartmann-Lüders[1]. »

Dans les polymères, la déformation irréversible est due à un glissement des chaînes polymères les unes par rapport aux autres. On est plus dans le domaine de la viscosité que dans celui de la plasticité ; selon le comportement du polymère, on parle de viscoélasticité ou de viscoplasticité.

Dans les émulsions ou les mousses, la déformation irréversible suit un autre mécanisme, à une échelle plus grande que celle de l'atome : ce sont les gouttelettes ou les bulles qui changent de position les unes par rapport aux autres.

Dans tous les cas, la déformation plastique résulte de mouvements au sein de la matière. Ces mouvements s'accompagnent de frottements (force de Peierls-Nabarro dans le cas des dislocations), et produisent donc de la chaleur. L'échauffement est en général négligeable, mais il peut être nécessaire de le prendre en compte si la déformation est rapide (adiabatique, la chaleur n'a pas le temps de s'évacuer et provoque une élévation notable de la température de la pièce).

Notes et références

  1. Alan Cottrell, An Introduction to Metallurgy, Cambridge, The Institute of Metals, (ISBN 0901716936), « 21. Mechanical properties », p. 393.

Voir aussi

Articles connexes

Liens externes