Aller au contenu

Maille (théorie des graphes)

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 25 décembre 2019 à 22:38 et modifiée en dernier par Vincent Lefèvre (discuter | contributions). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

En théorie des graphes, la maille d'un graphe est la longueur du plus court de ses cycles. Un graphe acyclique est généralement considéré comme ayant une maille infinie (ou, pour certains auteurs, une maille de −1).

Définition

[modifier | modifier le code]

La maille d'un graphe est la longueur du plus court de ses cycles[1].

Familles associées

[modifier | modifier le code]

Lien avec la coloration

[modifier | modifier le code]

Il existe des théorèmes à propos du rapport entre la maille et le nombre chromatique des graphes. Par exemple, un théorème de Paul Erdős publié en 1959[2],[3] donne que pour tout g et k, il existe un graphe de maille au moins g et de nombre chromatique au moins k. Par exemple, le graphe de Grötzsch a une maille de 4 et un nombre chromatique de 4. La preuve de ce théorème utilise la méthode probabiliste.

Notes et références

[modifier | modifier le code]
  1. (en) Reinhard Diestel, Graph Theory [détail des éditions], p. 11.
  2. Paul Erdős, « Graph theory and probability », Canadian Journal of Mathematics, vol. 11,‎ , p. 34-38 (DOI 10.4153/CJM-1959-003-9).
  3. Frédéric Havet, « Méthode probabiliste pour la coloration de graphes : Graphe de grande maille et de grand nombre chromatique (présentation) », sur Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, .