Lemme de classe monotone

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Le lemme de classe monotone, dû à Wacław Sierpiński[1] et popularisé par Dynkin[2], permet de démontrer, de manière économique, l'égalité entre deux lois de probabilité : de même que deux applications linéaires qui coïncident sur une base coïncident sur l'espace entier, deux mesures de probabilité qui coïncident sur un π-système, coïncident sur la tribu engendrée par ce π-système.

Dans certains ouvrages, le lemme de classe monotone apparaît sous le nom de « Théorème pi-lambda de Dynkin ».

Classe monotone et π-système[modifier | modifier le code]

Définition — 

  • Une classe \scriptstyle\ \mathcal{C}\ de parties d'un ensemble Ω est appelé π-système si cette classe est stable par intersection finie :
 \{A\in \mathcal{C}\text{ et }B\in \mathcal{C}\}\Rightarrow\{A\cap B\in \mathcal{C}\}.
  • Une classe \scriptstyle\ \mathcal{M}\ de parties d'un ensemble Ω est appelé λ-système ou classe monotone si cette classe contient Ω et est stable par différence, et par réunion croissante :
\begin{align} \{A\in \mathcal{M}\text{ et }B\in \mathcal{M}\text{ et }A\subset B\}\quad&\Rightarrow\quad\{B\setminus A\in \mathcal{M}\},
\\
\{\forall n\ge 0,\quad \{A_{n}\in \mathcal M\text{ et } A_{n}\subset A_{n+1}\}\}\quad&\Rightarrow\quad\left\{\bigcup_{n\ge 0} A_{n}\ \in \mathcal M\right\}.\end{align}
Exemples de π-systèmes  :
  • une classe d'intervalles : \scriptstyle\  \mathcal{C}_1=\{]-\infty,\,x]\ |\  x\in\R\}.
  • la classe des singletons : \scriptstyle\  \mathcal{C}_2=\{\{x\}\ |\ x\in \Omega\}\ \cup\ \{\emptyset\}.
  • la classe des pavés : \scriptstyle\  \mathcal{C}_3=\{A\times B\ |\ A,B\in \mathcal{P}(\Omega)\}.
Un exemple de classe monotone  :

Soit deux mesures de probabilité \scriptstyle\ \mathbb{P}\ et \scriptstyle\ \mathbb{Q}\ définies sur \scriptstyle\ (\Omega,\mathcal{B}).\ La classe \scriptstyle\  \mathcal{M}=\{A\in\mathcal{B}\ |\  \mathbb{P}(A)=\mathbb{Q}(A)\}\ est une classe monotone.

Énoncé et démonstration du lemme de classe monotone[modifier | modifier le code]

Lemme de classe monotone —  La plus petite classe monotone contenant le π-système \scriptstyle\ \mathcal{C}\ est la tribu engendrée par \scriptstyle\ \mathcal{C}.\

Applications[modifier | modifier le code]

Lemme d'unicité des mesures de probabilité[modifier | modifier le code]

Le lemme de classe monotone a une conséquence immédiate

Lemme d'unicité des mesures de probabilité —  Deux mesures de probabilité \scriptstyle\ \mathbb{P}\ et \scriptstyle\ \mathbb{Q}\ définies sur l'espace probabilisable \scriptstyle\ (\Omega,\mathcal{A}),\ et coincidant sur le π-système \scriptstyle\ \mathcal{C}\subset \mathcal{A},\ concident aussi sur la tribu engendrée par \scriptstyle\ \mathcal{C}\  :

 \{\forall A\in \mathcal{C},\quad \mathbb{P}(A)=\mathbb{Q}(A)\}\quad\Rightarrow\quad\{\forall A\in \sigma(\mathcal{C}),\quad \mathbb{P}(A)=\mathbb{Q}(A)\}.

Parmi de nombreuses applications importantes du lemme d'unicité, citons celle qui est peut-être la plus importante :

Corollaire — Il suit que :

Critères d'indépendance[modifier | modifier le code]

Par exemple,

Critères — Soit X et Y deux variables aléatoires réelles définies sur un espace probabilisé \scriptstyle\ (\Omega,\mathcal{A},\mathbb{P}).\

  • Si, pour tout couple (x,y) de nombres réels,
 \mathbb{P}\left(X\le x\text{ et }Y\le y\right)\ =\ \mathbb{P}\left(X\le x\right)\times\mathbb{P}\left(Y\le y\right),
alors X et Y sont indépendantes.
  • Si Y est à valeurs dans \scriptstyle\ \mathbb{N},\ et si, pour tout couple \scriptstyle\ (x,n)\in\mathbb{R}\times\mathbb{N},\
 \mathbb{P}\left(X\le x\text{ et }Y=n\right)\ =\ \mathbb{P}\left(X\le x\right)\times\mathbb{P}\left(Y=n\right),
alors X et Y sont indépendantes.
  • Bien sûr, si X et Y sont à valeurs dans \scriptstyle\ \mathbb{N},\ et si, pour tout couple \scriptstyle\ (m,n)\in\mathbb{N}^2,\
 \mathbb{P}\left(X=m\text{ et }Y=n\right)\ =\ \mathbb{P}\left(X=m\right)\times\mathbb{P}\left(Y=n\right),
alors X et Y sont indépendantes.

La démonstration du dernier critère ne nécessite pas le lemme de classe monotone, mais ce lemme est très utile pour la démonstration des deux premiers critères. On peut utiliser le deuxième critère pour démontrer, par exemple, que dans la méthode de rejet, le nombre d'itérations est indépendant de l'objet aléatoire (souvent un nombre aléatoire) engendré au terme de ces itérations. Pour la démonstration de ces critères, ainsi que pour la démonstration du lemme de regroupement, on a besoin de la définition et de la proposition[5] suivantes.

Définition — Dans un espace probabilisé \scriptstyle\ (\Omega,\mathcal{A},\mathbb{P}),\ une famille finie \scriptstyle\ (\mathcal{C}_{i})_{i\in I}\ de classes incluses dans \scriptstyle\ \mathcal{A}\ est une famille indépendante si et seulement si

\forall (C_i)_{i\in I}\in\prod_{i\in I}\mathcal{C}_i,\qquad \mathbb{P}\left(\bigcap_{i\in I}C_i\right)=\ \prod_{i\in I}\ \mathbb{P}(C_i).

Proposition — Si, dans un espace probabilisé \scriptstyle\ (\Omega,\mathcal{A},\mathbb{P}),\ une famille finie \scriptstyle\ (\mathcal{C}_{i})_{i\in I}\ de π-systèmes inclus dans \scriptstyle\ \mathcal{A}\ est une famille indépendante, alors la famille \scriptstyle\ \left(\sigma(\mathcal{C}_{i})\right)_{i\in I}\ est une famille de tribus indépendantes.

Applications  :
  • Posons \scriptstyle\  \mathcal{C}_1=\{X^{-1}(]-\infty,\,x])\ |\  x\in\R\} et \scriptstyle\  \mathcal{C}_2=\{Y^{-1}(]-\infty,\,y])\ |\  y\in\R\}. Alors, sous les hypothèses du premier critère, \scriptstyle\  \mathcal{C}_1 et \scriptstyle\  \mathcal{C}_2 sont des π-systèmes indépendants. En vertu de la proposition, \scriptstyle\  \sigma(\mathcal{C}_1) et \scriptstyle\  \sigma(\mathcal{C}_2) sont alors des tribus indépendantes. Mais \scriptstyle\  \sigma(\mathcal{C}_1)=\sigma(X) et \scriptstyle\  \sigma(\mathcal{C}_2)=\sigma(Y), ce qui assure bien l'indépendance du couple (X,Y).
  • Posons \scriptstyle\  \mathcal{C}_3=\{X^{-1}(m)\ |\  m\in\N\}\cup\{\emptyset\} et \scriptstyle\  \mathcal{C}_4=\{Y^{-1}(n)\ |\  n\in\N\}\cup\{\emptyset\}. Sous les hypothèses du deuxième critère, \scriptstyle\  \mathcal{C}_1 et \scriptstyle\  \mathcal{C}_4 sont des π-systèmes indépendants. Par ailleurs, \scriptstyle\  \sigma(\mathcal{C}_1)=\sigma(X) et \scriptstyle\  \sigma(\mathcal{C}_4)=\sigma(Y), et on conclut comme précédemment. Pour démontrer le troisième critère, on utilise cette fois \scriptstyle\  \mathcal{C}_3 et \scriptstyle\  \mathcal{C}_4.

Voir aussi[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. 1928, Un théorème général sur les familles d'ensembles, Fund. Math, 12, 206-210,
  2. (en) Eugene Dynkin (dir.) (trad. D. E. Brown), Theory of Markov Processes, Dover Publications Inc,‎ 31 janvier 2008 (1re éd. 1961), 224 p. (ISBN 0486453057 et 978-0486453057), chap. 1, p. 1-2.
  3. Par définition de \scriptstyle\ \sigma(\mathcal{C}),\ (voir tribu engendrée) \scriptstyle\ \sigma(\mathcal{C})\ est la plus petite (pour l'inclusion) tribu contenant \scriptstyle\ \mathcal{C},\ alors que \scriptstyle\ \mathcal{M}_{\mathcal{C}}\ est une tribu contenant \scriptstyle\ \mathcal{C}.\ Donc \scriptstyle\ \sigma(\mathcal{C})\ est plus petite (pour l'inclusion) que \scriptstyle\ \mathcal{M}_{\mathcal{C}},\ autrement dit \scriptstyle\ \sigma(\mathcal{C}) \subset \mathcal{M}_{\mathcal{C}}.\
  4. (en) Olav Kallenberg (en), Foundations of Modern Probability [détail des éditions], démonstration développée à partir de la démonstration du Théorème 1.1, page 2.
  5. (en) Olav Kallenberg (en), Foundations of Modern Probability [détail des éditions], Lemme 3.6, page 50.

Bibliographie[modifier | modifier le code]

  • (en) Olav Kallenberg, Foundations of Modern Probability, Springer, coll. « Probability and Its Applications »,‎ 1997 (réimpr. 2001), 638 p. (ISBN 0-387-95313-2)

Pages liées[modifier | modifier le code]