Graphe de Harborth

Un article de Wikipédia, l'encyclopédie libre.

Graphe de Harborth
Image illustrative de l’article Graphe de Harborth

Nombre de sommets 52
Nombre d'arêtes 104
Distribution des degrés 4-régulier
Rayon 6
Diamètre 9
Maille 3
Automorphismes 4 (Z/2Z×Z/2Z)
Nombre chromatique 3
Indice chromatique 4
Propriétés Allumette
Distance-unité
Planaire
Eulérien

Le graphe de Harborth est, en théorie des graphes, un graphe 4-régulier possédant 52 sommets et 104 arêtes. C'est un graphe allumette donc c'est à la fois un graphe distance-unité et un graphe planaire. Il s'agit du plus petit graphe allumette 4-régulier connu et il fut découvert par Heiko Harborth en 1986[1]. Si sa minimalité n'est toujours pas prouvée, on sait en revanche qu'il n'existe pas de graphe allumette 5-régulier[2].

Propriétés[modifier | modifier le code]

Propriétés générales[modifier | modifier le code]

Le diamètre du graphe de Harborth, l'excentricité maximale de ses sommets, est 9, son rayon, l'excentricité minimale de ses sommets, est 6 et sa maille, la longueur de son plus court cycle, est 3. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 4-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 4 arêtes.

En 2006, Eberhard H.-A. Gerbracht démontra que c'était un graphe rigide[3].

Coloration[modifier | modifier le code]

Le nombre chromatique du graphe de Harborth est 3. C'est-à-dire qu'il est possible de le colorer avec 3 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes mais ce nombre est minimal. Il n'existe pas de 2-coloration valide du graphe.

L'indice chromatique du graphe de Harborth est 4. Il existe donc une 4-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques[modifier | modifier le code]

Le groupe d'automorphismes du 52-graphe de Harborth est un groupe abélien d'ordre 4 isomorphe à Z/2Z×Z/2Z, le groupe de Klein.

Le polynôme caractéristique de la matrice d'adjacence du graphe de Harborth est :

Voir aussi[modifier | modifier le code]

Liens internes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Références[modifier | modifier le code]

  1. Harborth, H. "Match Sticks in the Plane." In The Lighter Side of Mathematics. Proceedings of the Eugéne Strens Memorial Conference of Recreational Mathematics & its History. Calgary, Canada, July 27-August 2, 1986 (Eds. R. K. Guy and R. E. Woodrow). Washington, DC: Math. Assoc. Amer., pp. 281-288, 1994.
  2. Peterson, I. "Mathland: Matchsticks in the Summer." August 1996. http://www.maa.org/mathland/mathland_8_12.html
  3. Gerbracht, E. H.-A. "Minimal Polynomials for the Coordinates of the Harborth Graph." Oct. 5, 2006. https://arxiv.org/abs/math.CO/0609360.