Answer set programming

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

L’answer set programming est une forme de programmation déclarative adaptée aux problèmes de recherche combinatoires (par exemple, sudoku et coloration de graphes).

Dans le contexte de la programmation logique, cette approche conduit à la nécessité de distinguer deux types de négation - la négation par manque d'information, et la négation forte. L'exemple suivant, illustrant la différence entre les deux types de négation, appartient à John McCarthy[réf. nécessaire][1] :

Un autobus scolaire peut traverser des voies ferrées à condition qu'il n'y ait pas de train qui approche.

Comme nous ne savons pas nécessairement si un train approche, la règle (comme en Prolog) qui utiliserait la négation par défaut, n’est pas adéquate dans certains contextes: en effet elle dit qu’il est acceptable de traverser en l’absence d’information sur un train qui approche. La règle la plus faible, qui utilise une forte négation peut être içi préférable (ne pas traverser si on ne sait pas si un train arrive):

En ASP, la résolution de problème se réduit à calculer des modèles stables, logiquement consistants. Dans un sens plus général, ASP inclut toutes les applications des "Answer set" aux problèmes de représentation des connaissances[2],[3], c'est à dire en quelque sorte représenter les connaissances (règles) sous la forme d'énumérations (answer set)[incompréhensible] et l’évaluation des requêtes dans le style Prolog, pour résoudre les problèmes qui se posent dans ces applications. ASP permet de décider les problèmes dans NP et plus généralement les problèmes de la classe NPNP (voir hiérarchie polynomiale).

Exemples d'utilisation d'ASP[modifier | modifier le code]

Dans cette section, nous donnons des programmes ASP écrits en Lparse[réf. nécessaire].

Coloration de graphe[modifier | modifier le code]

Coloration d'un graphe avec trois couleurs.

Le problème de coloration de graphe consiste à attribuer des couleurs à des sommets d'un graphe non orienté de façon que deux sommets reliés n'aient pas la même couleur. Le problème ASP suivant permet de savoir si un tel graphe est coloriable ou non et d'obtenir une coloration ː

c(1..n).
1 {couleur(X,I) : c(I)} 1 :- sommet(X).
:-couleur(X,I), couleur(Y,I), relie(X,Y), c(I).

La premier ligne définit les numéros comme les couleurs possibles. La ligne suivante attribue une couleur unique à chaque sommet . La contrainte en ligne 3 interdit d'affecter la même couleur aux sommets et , si une arête les relient. Le programme dans cet exemple illustre l’organisation en « générer et tester» que l'on trouve souvent dans les programmes ASP simples. La règle de choix en ligne 2 décrit un ensemble de « solutions possibles ». Elle est suivie d’une contrainte, ici en ligne 3 qui élimine toutes les solutions possibles qui ne sont pas acceptables, ici qui ne sont pas des bons coloriages.

À cela, il faut ajouter une description du graphe comme par exemple ː

sommet(1..10).
relie(1,2).
relie(2,3).
relie(3,4).
relie(4,5).
relie(6,8).
relie(6,9).
relie(7,9).
relie(8,10).
relie(1, 6).
relie(2, 7).
relie(3, 8).
relie(4, 9).
relie(5, 10).

Le programme smodels[réf. nécessaire] est exécuté sur celui-ci, avec la valeur numérique de spécifiée sur la ligne de commande, le programme donne des atomes de la forme qui représentent un coloriage du graphe avec n couleurs.

Clique[modifier | modifier le code]

Une clique de trois sommets.

Une clique dans un graphe est un ensemble de sommets reliés deux à deux. Le programme suivant de lparse trouve une clique de taille dans un graphe donné, ou détermine s'il n’en n'existe pas :

n {dansclique(X) : sommet(X)}.
:-dansclique(X), dansclique(Y), sommet(X) sommet(Y), X ! = Y, not relie(X,Y), not relie(Y,X).

Il s’agit d’un autre exemple de l’organisation de générer-et-tester. La règle de choix en ligne 1 « génère » tous les ensembles de sommets avec sommets. La contrainte à la ligne 2 « supprime » les ensembles qui ne sont pas des cliques.

Cycle hamiltonien[modifier | modifier le code]

Un cycle hamiltonien dans un graphe orienté est un chemin qui passe exactement une et une seule fois par chaque sommet. Le programme Lparse suivant trouve un cycle hamiltonien dans un graphe donné, s’il existe. Nous supposons que 0 est l'un des sommets.

{dansChemin(X,Y)} :- relie(X,Y).

:- 2 {dansChemin(X,Y) : relie(X,Y)}, sommet(X).
:- 2 {dansChemin(X,Y) : relie(X,Y)}, sommet(Y).

atteignable(X) :- dansChemin(0,X), sommet(X).
atteignable(Y) :- dansChemin(X,Y), relie(X,Y).

:- not atteignable(X), sommet(X).

La règle de choix en ligne 1 « génère » tous les sous-ensembles composées d'arêtes du graphe. Les deux contraintes « éliminent » les sous-ensembles qui ne sont pas des chemins. Les deux lignes suivantes définissent le prédicat auxiliaire atteignable(X) (« X est accessible depuis le sommet 0 ») de manière récursive. Ce prédicat permet (dernière ligne) de vérifier que le chemin couvre tout le graphe.

Ce programme est un exemple de l’organisation plus générale de « générer, définir et tester » : il inclut la définition d’un prédicat auxiliaire qui nous permet d’éliminer toutes les solutions possibles mais « mauvaises ».

Sémantique[modifier | modifier le code]

La sémantique d'ASP est inspiré de la logique here and there proposé par Heyting en 1930[4]. ASP est fondé sur la sémantique des modèles stables de programmation logique. En ASP, la résolution de problème se réduit à calculer des modèles stables, logiquement consistants, mais sans description du processus de résolution du modèle. Un solveur est alors utilisé pour calculer le modèle. Le processus de résolution utilisé dans la conception de nombreux solveurs est une amélioration de l'algorithme DPLL et, en principe, il s’arrête toujours (contrairement à l’évaluation en Prolog, qui peut conduire à une boucle infinie).

Comparaison des implémentations[modifier | modifier le code]

Les anciens systèmes, tels que Smodels, utilisaient un algorithme de rétropropagation (« back-propagation » en anglais) pour trouver des solutions. Avec l'évolution de la théorie et de la pratique des solveurs SAT booléens, un certain nombre de solveurs ASP ont été construits comme des surcouches de solveurs SAT, y compris ASSAT et Cmodels. Ils convertissent les formule ASP en propositions de SAT, appliquent le solveur SAT et ensuite reconvertissent les solutions en forme ASP. Les systèmes plus récents, comme « clasp », utilisent une approche hybride, en utilisant des algorithmes inspirés par SAT, sans conversion complète en une forme de logique booléenne. Ces approches permettent d’importantes améliorations de performance.

Le projet Potassco inclut plusieurs des outils décrits ci-dessous.

La plupart des outils prennent en charge les variables, mais seulement indirectement, en forçant l'évaluation des variables (grounding), en utilisant un système comme Lparse ou gringo comme front-end.

Platform Features Mechanics
Nom Système d'exploitation Licence Variables Symboles de fonctions Ensembles explicites Listes explicites Prise en charge de la disjonction (règles de choix)
ASPeRiX Linux GPL
Oui
Non évaluation des variables à la volée
ASSAT Solaris Freeware fondé sur un solveur SAT
Clasp Answer Set Solver Linux, Mac OS, Windows GPL
Oui, dans Clingo
Oui
Non Non
Oui
incrémental, inspiré par les solveurs SAT (nogood, dirigé par les conflits)
Cmodels Linux, Solaris GPL Nécessite l'évaluation des variables
Oui
incrémental, inspiré par les solveurs SAT (nogood, dirigé par les conflits)
DLV Linux, Mac OS, Windows[5] gratuit pour l'utilisation universitaire et pédagogique non commerciale, ainsi que pour les organisations à but non lucratif[5]
Oui
Oui
Non Non
Oui
incompatible avec Lparse
DLV-Complex Linux, Mac OS, Windows Freeware
Oui
Oui
Oui
Oui
construit sur DLV — incompatible avec Lparse
GnT Linux GPL Nécessite l'évaluation des variables
Oui
construit sur smodels
nomore++ Linux GPL {littéral + fondé sur les règles} combiné
Platypus Linux, Solaris, Windows GPL distribué, nomore++ multitâche, smodels
Pbmodels Linux ? fondé sur un solveur pseudo-booléen
Smodels Linux, Mac OS, Windows GPL Nécessite l'évaluation des variables Non Non Non Non
Smodels-cc Linux ? Nécessite l'évaluation des variables fondé sur un solveur SAT ; smodels avec clauses de conflit
Sup Linux ? fondé sur un solveur SAT

Voir aussi[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. American Association for Artificial Intelligence. et Innovative Applications of Artificial Intelligence Conference (23rd : 2008 : Chicago, Ill.), Proceedings of the Twenty-third AAAI Conference on Artificial Intelligence and the Twentieth Innovative Applications of Artificial Intelligence Conference : 13-17 July 2008, Chicago, Illinois., AAAI Press, (ISBN 1577353684 et 9781577353683, OCLC 253375197, lire en ligne)
  2. (en) Représentation des connaissances, raisonnement et déclarative Problem Solving, Cambridge University Press, (ISBN 978-0-521-81802-5, lire en ligne).
  3. (en) Manuel de représentation des connaissances, Elsevier, , 285 – 316 p. (ISBN 978-0-08-055702-1, lire en ligne), « réponse définit » [1] [PDF].
  4. (de) Arend Heyting, Die formalen Regeln der intuitionistischen Logik, (lire en ligne)
  5. a et b (en) « DLV System company page », DLVSYSTEM s.r.l. (consulté le 16 novembre 2011).

Liens externes[modifier | modifier le code]