Aller au contenu

Nœud de Conway

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 5 novembre 2021 à 14:25 et modifiée en dernier par J. N. Squire (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Nœud de Conway
Le nœud de Conway.
Présentation
Type
Nœuds mutants de Kinoshita-Terasaka K11n42 et de Conway K11n34.
Le nœud de Conway sur une porte du département de mathématiques de l'université de Cambridge.

Le nœud de Conway est, en mathématiques, et plus précisément en théorie des nœuds, un nœud particulier possédant 11 croisements, étudié par John Horton Conway[1]. Il est relié par mutation au nœud de Kinoshita-Terasaka[2].

Le polynôme de Jones du nœud de Conway est[1]:

.

Le mot de tresses du nœud de Conway est[1]:

.

Dans les tables de Dale Rolfsen, et sur l'atlas des nœuds, il porte le numéro K11n34.

Résolution de sa nature de non nœud bordant

La question longtemps ouverte de savoir si le nœud de Conway était un nœud bordant a été résolue (par la négative) en 2018 par Lisa Piccirillo. Après une évaluation durant deux ans par le comité, l'article est publié dans la revue Annals of Mathematics en [3],[4].

Références

  1. a b et c (en) Eric W. Weisstein, « Conway's Knot », sur MathWorld.
  2. (en) Sergei V. Chmutov, « Mutant Knots », Université d'État de l'Ohio, .
  3. (en) Erica Klarreich, « Graduate Student Solves Decades-Old Conway Knot Problem », sur Quanta Magazine, (consulté le ).
  4. (en) Lisa Piccirillo, « The Conway knot is not slice », Annals of Mathematics, vol. 191, no 2,‎ , p. 581–591 (DOI 10.4007/annals.2020.191.2.5, JSTOR 10.4007/annals.2020.191.2.5, arXiv 1808.02923).

Liens externes