Aller au contenu

Suite définie par récurrence

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 14 janvier 2021 à 15:26 et modifiée en dernier par Ambigraphe (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

En mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent.

Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple :

ou

ou

ou si l'on se place dans les suites de mots sur l'alphabet  :

Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres. Par exemple dans la dernière équation, si l'on admet que les sont des réels positifs, on peut écrire :

Une relation de récurrence et la donnée de « suffisamment » de termes initiaux permettent souvent de déterminer l'expression de tous les termes d'une suite (voir définition par récurrence).

Une relation de récurrence très simple est celle qui lie le terme d'indice n + 1 au terme d'indice n.

Exemple — On définit les puissances d'une variable par la relation de récurrence :
et l'initialisation .
Exemple — La suite de Fibonacci est définie par la donnée de et et par la relation de récurrence  ; cette relation de récurrence est dite « linéaire ».

Voir aussi

Sur les autres projets Wikimedia :

Sur les autres projets Wikimedia :

Suite récurrente linéaire