Pseudo-anneau de carré nul

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Ne doit pas être confondu avec Anneau nul.

Un pseudo-anneau de carré nul est un pseudo-anneau sur lequel la multiplication est nulle[1].

Le seul pseudo-anneau de carré nul unitaire est l'anneau nul, l'anneau à un seul élément.

Tout groupe abélien peut être muni d'une façon et d'une seule d'une structure de pseudo-anneau de carré nul, la multiplication nulle vérifiant systématiquement les conditions d'associativité et de distributivité requises d'un pseudo-anneau. Ses idéaux en tant que pseudo-anneau sont ses sous-groupes additifs. Il en découle que les seuls pseudo-anneaux A de carré nul sans idéal autres que {0} et A lui-même sont les groupes abéliens sans sous-groupes non triviaux, c'est-à-dire les groupes cycliques de cardinal premier[2]. Cette propriété permet de montrer la caractérisation suivante des idéaux maximaux d'un pseudo-anneau :

Un idéal I d'un pseudo-anneau commutatif A est maximal si et seulement si l'anneau quotient de A par I est soit un corps, soit un pseudo-anneau de carré nul sur un groupe additif cyclique de cardinal premier[3].

Références[modifier | modifier le code]

  1. Nicolas Bourbaki, Algèbre, Hermann,‎ 1970, p. I.97
  2. Oscar Zariski et Pierre Samuel, Commutative Algebra, t. 1, Van Nostrand,‎ 1958, p. 133
  3. László Rédei (en), Algebra, Pergamon Press,‎ 1967, vol. 1, p. 205-206 (où on lira un énoncé un peu plus technique ne supposant pas la commutativité)