« Adaptation humaine à la haute altitude » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Goulu (discuter | contributions)
début de traduction de la versiona anglaise https://en.wikipedia.org/wiki/High-altitude_adaptation_in_humans
(Aucune différence)

Version du 16 août 2014 à 16:16

L'adaptation à la haute altitude chez l'homme est une adaptation de populations humaines, spécialement les Tibétains, certains habitants des Andes et des hauts plateaux éthiopiens, qui ont acquis une capacité unique à survivre à de très hautes altitudes. L'expression désigne une évolution adaptive irréversible aux environnements de haute altitude, associée à des comportements et des mutations génétiques héréditaires. Alors que la plupart des humaines souffriraient de sérieux problèmes de santé, ces populations natives se développement bien dans les régions les plus élevées du globe telles que l'Himalaya, les Andes et l'Ethiopie. Ces populations ont subi d'importants changements physiologiques et génétiques, en particulier dans les systèmes de régulaton de la respiration et de la circulation sanguine comparée à la population générale de basse altitude.[1][2]

Cette adaptation est aujourd'hui reconnue comme l'un des exemples marquants de sélection naturelle en action.[3] En fait, l'adaptation des Tibétains est considérée par les scientifiques comme l'évolution humaine la plus rapide car elle est estimée dater de moins de 3000 ans.[4][5][6]

D'origine africaine, les hommes n'ont quitté l'Afrique que relativement récemment ( il y a moins de 100'000 ans) et colonisé le reste du monde[7] y compris les environnements les plus extrêmes comme les régions polaires et la haute montagne. L'oxygène essentiel à la vie animale est présent dans l'atmosphère en quantité proportionnelle à l'altitude. De ce fait, les plus hautes chaînes montagneuses du monde sont considérées comme inhabitables. Cependant, quelque 140 millions de personnes vivent en permanence au dessus de 2500 m d'altitude en Amérique du Nord et du Sud, Afrique de l'Est et Asie où elles prospèrent depuis des millénaires sur des montagnes exceptionnellement hautes sans difficultés apparentes.[8]

Il est connu que les humains d'autres parties du monde souffrent de sérieuses complications du mal d'altitude in these regions, often resulting in life-threatening trauma and even frequent death. Remarkably, understanding of the detail biological mechanism has revealed that adaptation of the Tibetans, Andeans and Ethiopians is indeed an observable instance of the principle of Darwinian evolution in humans, the process of natural selection acting on favourable characters such as enhanced respiratory mechanisms.[9][10]

Origine et base

L'Himalaya au bord sud du plateau tibétain

It is natural that the human species has been adapted to lowland environment where oxygen is generally abundant.[11] When people from the general lowlands go to altitudes above 2,500 mètres (8,20209975 pi), they experience mountain sickness, which is a type of hypoxia, a clinical syndrome of severe lack of oxygen. Complications include fatigue, dizziness, breathlessness, headaches, insomnia, malaise, nausea, vomiting, body pain, loss of appetite, ear-ringing, blistering and purpling and of the hands and feet, and dilated veins.[12][13][14] The sickness is compounded by related symptoms such as cerebral oedema (swelling of brain) and pulmonary oedema (fluid accumulation in lungs).[15][16] For several days, they breathe excessively and burn extra energy even when the body is relaxed. The heart rate then gradually decreases. Hypoxia, in fact, is one of the principal causes of death among mountaineers.[17][18] In women, pregnancy can be severely affected, such as development of high blood pressure, called preeclampsia, which causes premature labour, low birth weight of babies, and often complicated with profuse bleeding, seizures, and death of the mother.[1][19]

There are distinctive characteristics of high-altitude environments, including low concentration of available oxygen (which is due to lower barometric pressure), increased solar radiation, greater daily temperature fluctuation, aridity, low biomass, and limitation on energy production. Strikingly, more than 140 million people worldwide live at an elevation higher than 2 500 mètres (8 202,09975 pi) above sea level, of which 13 million are in Ethiopia, 1.7 million in Tibet (total of 78 million in Asia), 35 million in the South American Andes, and 0.3 million in Colorado Rocky Mountains.[20] Certain natives of Tibet, Ethiopia, and the Andes have been living at these high altitudes for generations and are protected from these conditions as a consequence of genetic adaptation.[8][12] It is estimated that at 4 000 mètres (13 123,3596 pi), every lungful of air only has 60% of the oxygen molecules that people at sea level have.[20] At elevations above 7 600 mètres (24 934,38324 pi), lack of oxygen becomes seriously lethal. That is, these highlanders are constantly exposed to an intolerably low oxygen environment, yet they live without any debilitating problems in these adverse environments.[9] Basically, the shared adaptation is the ability to maintain relatively low levels of haemoglobin, which is the chemical complex for transporting oxygen in the blood.[11] One of the best documented effects of high altitude is a progressive reduction in birth weight. It has been known that women of long-resident high-altitude population are not affected, in fact, studies show that on average, they give birth to heavier weight infants than women of lowland inhabitants. This is particularly true among Tibetan babies, whose average birth weight is 294-650 (~470) g heavier than the surrounding Chinese population; and their blood-oxygen level is considerably higher.[21]

The first scientific investigations of high-altitude adaptation was done by A. Roberto Frisancho of the University of Michigan in the late 1960s among the Quechua people of Peru.[22][23] However, the best scientific studies were started among the Tibetans in the early 1980s by an anthropologist Cynthia Beall at the Case Western Reserve University.[24]

Physiological basis

Tibetans

A Sherpa family

The beginning of the Himalayan climbing era in the 20th century brought up the anecdotal extraordinary physical performance of Tibetans at high altitude to the attention of scientists. These ethnic groups were realised to have lived at unusually high altitude for longer than any other population, and the hypothesis of a possible evolutionary genetic adaptation makes sense.[25] The Tibetan plateau has an average elevation of 4 000 mètres (13 123,3596 pi) above sea level; aptly nicknamed "the roof of the world", and covering more than 2.5 million km, it is the highest and largest plateau in the world. In 1990, it was estimated that 4,594,188 Tibetans live on the plateau, with 53% living at an altitude over 3 500 mètres (11 482,93965 pi). Fairly large numbers (about 600,000) live at an altitude exceeding 4 500 mètres (14 763,77955 pi) in the Chantong-Qingnan area.[26] Where the Tibetan highlanders live, the oxygen level is only about 60% of that at sea level. Remarkably, the Tibetans, who have been living at high altitudes for just 3,000 years, don’t exhibit the elevated haemoglobin concentrations to cope up with oxygen deficiency as observed in other populations who have moved temporarily or permanently at high altitudes. Instead, the Tibetans inhale more air with each breath and breathe more rapidly than either sea-level populations or Andeans. Tibetans have better oxygenation at birth, enlarged lung volumes throughout life, and a higher capacity for exercise. They show a sustained increase in cerebral blood flow, lower haemoglobin concentration, and less susceptibility to chronic mountain sickness than other populations, obviously due their longer history of high-altitude habitation.[27][28] General people can develop short-term tolerance with careful physical preparation and systematic monitoring of movements, but the biological changes are quite temporary and reversible when they return to lowlands.[29] Moreover, unlike lowland people who only experience increased breathing for a few days after entering high altitudes, Tibetans retain this rapid breathing and elevated lung-capacity throughout their lifetime.[30] This enables them to inhale larger amounts of air per unit of time to compensate for low oxygen levels. In addition, they have high levels (mostly double) of nitric oxide in their blood, when compared to lowlanders, and this probably helps their blood vessels dilate for enhanced blood circulation.[31] Further, their haemoglobin level is significantly low (average 15.6 g/dl in males and 14.2 g/dl in females), which is on average 3.6 g/dl less for both males and females in comparison to other humans. This shows long-term compensation to the deficit in oxygen supply, and in this way they evade both the effects of hypoxia and mountain sickness throughout life. Even when they climbed the highest summits (like the Mt. Everest), they showed regular oxygen uptake, greater ventilation, more brisk hypoxic ventilatory responses, larger lung volumes, greater diffusing capacities, constant body weight and a better quality of sleep, compared to other people from the lowland.[32]

Andeans

The Andes highlanders are known for centuries, such as from the 16th century missionaries, that their reproduction has always been absolutely normal, without any effect in the giving birth or the risk for early pregnancy loss, which are common to hypoxic stress.[33] They have developmentally acquired enlarged residual lung volume and its associated increase in alveolar area which are supplemented with increased tissue thickness and moderate increase in red blood cells. Though the physical growth in body size is delayed, growth in lung volumes is accelerated.[34] In contrast to the Tibetans, the Andeans, who have been living at high-altitudes for no more than 11,000 years, do not show unique haemoglobin level, instead they exhibit the same elevated haemoglobin concentrations that lowlanders exhibit at high elevations. However, they do have increased oxygen level in their haemoglobin, that is, more oxygen per blood volume than other people. This confers an ability to carry more oxygen in each red blood cell, a more effective delivery system of oxygen throughout their bodies than other people, while their breathing is essentially at the same rate.[30] This enables them to overcome hypoxia and normally reproduce without risk of death for the mother or baby. But elevated haemoglobin levels still leave them at risk for mountain sickness with old age.

Quechua woman with llamas

Among the Quechua people of the Altiplano, there is a significant variation in NOS3 (the gene encoding endothelial nitric oxide synthase, eNOS), which is associated with higher levels of nitric oxide in high altitude.[35] Nuñoa children of Quechua ancestry exhibit higher blood-oxygen content (91.3) and lower heart rate (84.8) than their counterpart school children of different ethnicity, who have an average of 89.9 blood-oxygen and 88-91 heart rate.[36] High-altitude born and bred females of Quechua origins have comparatively enlarged lung volume for increased respiration.[37]

Aymara ceremony

Blood profile comparisons show that among the Andeans, Aymaran highlanders are better adapted to highlands than the Quechuas.[38][39] Among the Bolivian Aymara people, the resting ventilation and hypoxic ventilatory response were quite low (roughly 1.5 times lower), in contrast to those of the Tibetans. The intrapopulation genetic variation was relatively less among the Aymara people.[40][41] Moreover, unlike the Tibetans, the blood haemoglobin level is quite normal among Aymarans, with an average of 19.2 g/dl for males and 17.8 g/dl for females.[42] Among the different native highlander populations, the underlying physiological responses to adaptation are quite different. For example, among four quantitative features, such as are resting ventilation, hypoxic ventilatory response, oxygen saturation, and haemoglobin concentration, the levels of variations are significantly different between the Tibetans and the Aymaras.[43] The Andeans, in general are the most poorly adapted, as particularly shown by their frequent mountain sickness and loss of adaptative characters when they move to lowlands.[44]

Ethiopians

The Amhara of Ethiopia also live at extremely high altitudes, around 3 000 mètres (9 842,5197 pi) to 3 500 mètres (11 482,93965 pi). Amharans exhibit elevated haemoglobin levels, like Andeans and lowlander peoples at high altitudes, but do not exhibit the Andean’s increased in oxygen-content of haemoglobin.[45] Among healthy individuals, the average haemoglobin concentrations are 15.9 and 15.0 g/dl for males and females respectively (which is lower than normal, almost similar to the Tibetans), and an average oxygen content of haemoglobin is 95.3% (which is higher than average, like the Andeans).[46] Additionally, Ethiopian highlanders do not exhibit any significant change in blood circulation of the brain, which has been observed among the Peruvian highlanders (and attributed to their frequent altitude-related illnesses).[47] Yet, similar to the Andeans and Tibetans, the Ethiopian highlanders are immune to the extreme dangers posed by high-altitude environment, and the pattern of adaptation definite unique from the other highland people.[20]

Genetic basis

The underlying molecular evolution of high-altitude adaptation has been explored and understood fairly recently.[9] Depending on the geographical and environmental pressures, high-altitude adaptation involves different genetic patterns. At the turn of the 21st century, it was reported that the genetic make-up of the respiratory components of the Tibetan and the Ethiopian populations are significantly different.[43]

Tibetans

Substantial evidence in Tibetan highlanders suggests that variation in haemoglobin and blood-oxygen levels are adaptive as Darwinian fitness. It has been documented that Tibetan women with a high likelihood of possessing one to two alleles for high blood-oxygen content (which is odd for normal women) had more surviving children; the higher the oxygen capacity, the lower the infant mortality.[48] In 2010, for the first time, the genes responsible for the unique adaptive traits were identified following genome sequences of 50 Tibetans and 40 Han Chinese from Beijing. Initially, the strongest signal of natural selection detected was a transcription factor involved in response to hypoxia, called endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1). It was found that one single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency difference between Tibetan and mainland Chinese samples, representing the fastest genetic change observed in any human gene to date. Hence, Tibetan adaptation to high altitude becomes the fastest process of phenotypically observable evolution in humans,[49] which is estimated to occur in less than 3,000 years ago, when the Tibetans split up from the mainland Chinese population.[6] Mutations in EPAS1, at higher frequency in Tibetans than their Han neighbours, correlate with decreased haemoglobin concentrations among the Tibetans, which is the hallmark of their adaptation to hypoxia. Simultaneously, two genes, egl nine homolog 1 (EGLN1) (which inhibits haemoglobin production under high oxygen concentration) and peroxisome proliferator-activated receptor alpha (PPARA), were also identified to be positively selected in relation to decreased haemoglobin nature in the Tibetans.[50] Similarly, the Sherpas, known for their Himalayan explorations, exhibit similar patterns in the EPAS1 gene, which further fortifies that the gene is under selection for adaptation to the high-altitude life of Tibetan populations.[51] EPAS1 and EGLN1 are definitely the major genes for unique adaptive traits when compared with those of the Chinese and Japanese.[52] All these genes (EPAS1, EGLN1, and PPARA) function in concert with another gene named hypoxia inducible factors (HIF), which in turn is a principal regulator of red blood cell production in response to oxygen metabolism.[53][54][55] The genes are associated not only with decreased haemoglobin levels, but also in regulating energy metabolism. EPAS1 is significantly associated with increased lactate concentration (the product of anaerobic glycolysis), and PPARA is correlated with decrease in the activity of fatty acid oxidation.[56] Further, the Tibetans are enriched for genes in the disease class of human reproduction (such as genes from the DAZ, BPY2, CDY, and HLA-DQ and HLA-DR gene clusters) and biological process categories of response to DNA damage stimulus and DNA repair (such as RAD51, RAD52, and MRE11A), which are related to the adaptive traits of high infant birth weight and darker skin tone and are most likely due to recent local adaptation.[57]

Andeans

The patterns of genetic adaptation among the Andeans are largely distinct from those of the Tibetan, with both populations showing evidence of positive natural selection in different genes or gene regions. However, EGLN1 appears to be the principal signature of evolution, as it shows evidence of positive selection in both Tibetans and Andeans. Even then, the pattern of variation for this gene differs between the two populations.[3] Among the Andeans, there are no significant associations between EPAS1 or EGLN1 SNP genotypes and haemoglobin concentration, which has been the characteristic of the Tibetans.[58] The whole genome sequences of 20 Andeans (half of them having chronic mountain sickness) revealed that two genes, SENP1 (an erythropoiesis regulator) and ANP32D (an oncogene) play vital roles in their weak adaptation to hypoxia.[59]

Ethiopians

The adaptive mechanism of Ethiopian highlanders is quite different. This is probably because their migration to the highland was relatively earlier; for example, the Amhara have inhabited altitudes above 2 500 mètres (8 202,09975 pi) for at least 5,000 years and altitudes around 2 000 mètres (6 561,6798 pi) to 2 400 mètres (7 874,01576 pi) for more than 70,000 years.[60] Genomic analysis of two ethnic groups, Amhara and Oromo, revealed that gene variations associated with haemoglobin difference among Tibetans or other variants at the same gene location do not influence the adaptation in Ethiopians.[61] Identification of specific genes further reveals that several candidate genes are involved in Ethiopians, including CBARA1, VAV3, ARNT2 and THRB. Two of these genes (THRB and ARNT2) are known to play a role in the HIF-1 pathway, a pathway implicated in previous work reported in Tibetan and Andean studies. This supports the concept that adaptation to high altitude arose independently among different highlanders as a result of convergent evolution.[62]

See also

References

  1. a et b (en) Frisancho AR, Human Adaptation and Accommodation, University of Michigan Press, , 175–301 p. (ISBN 0472095110, lire en ligne)
  2. Hillary Mayell, « Three High-Altitude Peoples, Three Adaptations to Thin Air », National Geographic News, National Geographic Society, (consulté le )
  3. a et b Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, López Herráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD, « Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data », PLOS Genetics, vol. 6, no 9,‎ , e1001116 (PMID 20838600, PMCID 2936536, DOI 10.1371/journal.pgen.1001116, lire en ligne)
  4. Sanders R, « Tibetans adapted to high altitude in less than 3,000 years », News Centre, UC Berkeley, UC Regents, (consulté le )
  5. Hsu J, « Tibetans Underwent Fastest Evolution Seen in Humans », Live Science, TechMediaNetwork.com, (consulté le )
  6. a et b Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J, « Sequencing of 50 human exomes reveals adaptation to high altitude », Science, vol. 329, no 5987,‎ , p. 75–78 (PMID 20595611, DOI 10.1126/science.1190371, lire en ligne)
  7. Templeton A, « Out of Africa again and again », Nature, vol. 416, no 6876,‎ , p. 45–51 (PMID 11882887, DOI 10.1038/416045a, lire en ligne)
  8. a et b Moore LG, « Human genetic adaptation to high altitude », High Alt Med Biol, vol. 2, no 2,‎ , p. 257–279 (PMID 11443005, DOI 10.1089/152702901750265341, lire en ligne)
  9. a b et c (en) Muehlenbein MP, Human Evolutionary Biology, Cambridge University Press, Cambridge, UK, , 170–191 p. (ISBN 0521879485, lire en ligne)
  10. Beall CM, « Detecting natural selection in high-altitude human populations », Respir Physiol Neurobiol, vol. 158, nos 2-3,‎ , p. 161–171 (PMID 17644049, DOI 10.1016/j.resp.2007.05.013)
  11. a et b Moore LG, Regensteine JG, « Adaptation to High Altitude », Annual Review of Anthropology, vol. 12,‎ , p. 285–304 (DOI 10.1146/annurev.an.12.100183.001441, lire en ligne)
  12. a et b Penaloza D, Arias-Stella J, « The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness », Circulation, vol. 115, no 9,‎ , p. 1132–1146 (PMID 17339571, DOI 10.1161/CIRCULATIONAHA.106.624544, lire en ligne)
  13. León-Velarde F, Villafuerte FC, Richalet JP, « Chronic mountain sickness and the heart », Prog Cardiovasc Dis, vol. 52, no 6,‎ , p. 540–549 (PMID 20417348, DOI 10.1016/j.pcad.2010.02.012)
  14. Wheatley K, Creed M, Mellor A, « Haematological changes at altitude », J R Army Med Corps, vol. 157, no 1,‎ , p. 38–42 (PMID 21465909, DOI 10.1136/jramc-157-01-07)
  15. Paralikar SJ, « High altitude pulmonary edema-clinical features, pathophysiology, prevention and treatment », Indian J Occup Environ Med, vol. 16, no 2,‎ , p. 59–62 (PMID 23580834, DOI 10.4103/0019-5278.107066)
  16. Eide RP 3rd, Asplund CA, « Altitude illness: update on prevention and treatment », Curr Sports Med Rep, vol. 11, no 3,‎ , p. 124–30 (PMID 22580489, DOI 10.1249/JSR.0b013e3182563e7a)
  17. Huey RB, Eguskitza X, Dillon M, « Mountaineering in thin air. Patterns of death and of weather at high altitude », Adv Exp Med Biol, vol. 502,‎ , p. 225–336 (PMID 11950141)
  18. Firth PG, Zheng H, Windsor JS, Sutherland AI, Imray CH, Moore GW, Semple JL, Roach RC, Salisbury RA, « Mortality on Mount Everest, 1921-2006: descriptive study », British Medical Journal, vol. 337,‎ , a2654 (PMID 19074222, PMCID 2602730, DOI 10.1136/bmj.a2654)
  19. Moore LG, Shriver M, Bemis L, Hickler B, Wilson M, Brutsaert T, Parra E, Vargas E, « Maternal adaptation to high altitude pregnancy An experiment of nature A review », Placenta, vol. 25, no suppl,‎ , S60-S71 (DOI 10.1016/j.placenta.2004.01.008)
  20. a b et c (en) Hornbein T, Schoene R, High Altitude: An Exploration of Human Adaptation (Lung Biology in Health and Disease Volume 161), Marcel Dekker, Inc., New York, USA, , 42–874 p. (ISBN 082474604X, lire en ligne)
  21. Niermeyer S, Yang P, Shanmina, Drolkar, Zhuang J, Moore LG, « Arterial oxygen saturation in Tibetan and Han infants born in Lhasa, Tibet », The New England Journal of Medicine, vol. 333, no 9,‎ , p. 1248–1252 (PMID 3917990, DOI 10.1056/NEJM199511093331903, lire en ligne)
  22. Frisancho AR, « Human growth and pulmonary function of a high altitude Peruvian Quechua population », Hum Biol, vol. 49, no 3,‎ , p. 365–379 (PMID 5372293)
  23. Leonard WR, « Contributions of A. Roberto Frisancho to human population biology: An introduction », American Journal of Human Biology, vol. 21, no 5,‎ , p. 599–605 (PMID 19367580, DOI 10.1002/ajhb.20916)
  24. Beall C, « Human adaptability studies at high altitude: Research designs and major concepts during fifty years of discovery », Am J Hum Biol, vol. 25, no 2,‎ , p. 141–147 (PMID 23349118, DOI 10.1002/ajhb.22355)
  25. Wu T, Kayser B, « High altitude adaptation in Tibetans », High Alt Med Biol, vol. 7, no 3,‎ , p. 193–208 (PMID 16978132, DOI 10.1089/ham.2006.7.193)
  26. Wu T, « The Qinghai-Tibetan plateau: how high do Tibetans live? », High Alt Med Biol, vol. 2, no 4,‎ , p. 489–499 (PMID 11809089, DOI 10.1089/152702901753397054)
  27. Moore LG, Niermeyer S, Zamudio S, « Human adaptation to high altitude: Regional and life-cycle perspectives », Am J Phys Anthropol, vol. 107,‎ , p. 25–64 (PMID 9881522, DOI 10.1002/(SICI)1096-8644(1998)107:27+<25::AID-AJPA3>3.0.CO;2-L)
  28. Lorna G Moore, « Human genetic adaptation to high altitude », High Altitude Medicine & Biology, vol. 2, no 2,‎ , p. 257–279 (PMID 11443005, DOI 10.1089/152702901750265341)
  29. Muza SR, Beidleman BA, Fulco CS, « Altitude preexposure recommendations for inducing acclimatization », High Alt Med Biol, vol. 11, no 2,‎ , p. 87–92 (PMID 20586592, DOI 10.1089/ham.2010.1006)
  30. a et b Beall CM, « Two routes to functional adaptation: Tibetan and Andean high-altitude natives », Proc Natl Acad Sci U S A, vol. 14, no Suppl 1,‎ , p. 8655–8660 (PMID 17494744, PMCID 1876443, DOI 10.1073/pnas.0701985104)
  31. Beall CM, Laskowski D, Erzurum SC, « Nitric oxide in adaptation to altitude », Free Radic Biol Med, vol. 52, no 7,‎ , p. 1123–1134 (PMID 22300645, PMCID 3295887, DOI 10.1016/j.freeradbiomed.2011.12.028)
  32. Wu T, Li S, Ward MP, « Tibetans at extreme altitude », Wilderness Environ Med, vol. 16, no 1,‎ , p. 47–54 (PMID 15813148, DOI 10.1580/pr04-04.1)
  33. « Fifty fertile years: anthropologists' studies of reproduction in high altitude natives », Am J Hum Biol, vol. 25, no 2,‎ , p. 179–189 (PMID 23382088, DOI 10.1002/ajhb.22357)
  34. Frisancho AR, « developmental functional adaptation to high altitude: review », Am J Hum Biol, vol. 25, no 2,‎ , p. 151–168 (PMID 23386410, DOI 10.1002/jhb.22367)
  35. Wang P, Ha AY, Kidd KK, Koehle MS, Rupert JL, « A variant of the endothelial nitric oxide synthase gene (NOS3) associated with AMS susceptibility is less common in the Quechua, a high altitude Native population », High Alt Med Biol, vol. 11, no 1,‎ , p. 27–30 (PMID 20367485, DOI 10.1089/ham.2009.1054)
  36. Huicho L, Pawson IG, León-Velarde F, Rivera-Chira M, Pacheco A, Muro M, Silva J, « Oxygen saturation and heart rate in healthy school children and adolescents living at high altitude », Am J Hum Biol, vol. 13, no 6,‎ , p. 761–770 (PMID 11748815, DOI 10.1002/ajhb.1122)
  37. Kiyamu M, Bigham A, Parra E, León-Velarde F, Rivera-Chira M, Brutsaert TD, « Developmental and genetic components explain enhanced pulmonary volumes of female Peruvian Quechua », Am J Phys Anthropol, vol. 148, no 4,‎ , p. 534–542 (PMID 22552823, DOI 10.1002/ajpa.22069)
  38. Arnaud J, Quilici JC, Rivière G, « High-altitude haematology: Quechua-Aymara comparisons », Annals of Human Biology, vol. 8, no 6,‎ , p. 573–578 (PMID 7337418, DOI 10.1080/03014468100005421)
  39. Arnaud J, Gutierrez N, Tellez W, Vergnes H, « Haematology and erythrocyte metabolism in man at high altitude: an Aymara-Quechua comparison », Am J Phys Anthropol, vol. 67, no 3,‎ , p. 279–284 (PMID 4061583, DOI 10.1002/ajpa.1330670313)
  40. Beall CM, Strohl KP, Blangero J, Williams-Blangero S, Almasy LA, Decker MJ, Worthman CM, Goldstein MC, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C, « Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives », Am J Phys Anthropol, vol. 104, no 4,‎ , p. 427–447 (PMID 9453694, DOI 10.1002/(SICI)1096-8644(199712)104)
  41. Beall CM, « Tibetan and Andean contrasts in adaptation to high-altitude hypoxia », Adv Exp Med Biol, vol. 475, no 1,‎ , p. 63–74 (PMID 10849649)
  42. Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, Decker MJ, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C, « Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara », Am J Phys Anthropol, vol. 106, no 3,‎ , p. 385–400 (PMID 9696153, DOI 10.1002/(SICI)1096-8644(199807)106)
  43. a et b Beall CM, « Tibetan and Andean patterns of adaptation to high-altitude hypoxia », Hum Biol, vol. 72, no 1,‎ , p. 201–228 (PMID 10721618)
  44. Xing G, Qualls C, Huicho L, Rivera-Ch M, Stobdan T, Slessarev M, Prisman E, Ito S, Wu H, Norboo A, Dolma D, Kunzang M, Norboo T, Gamboa JL, Claydon VE, Fisher J, Zenebe G, Gebremedhin A, Hainsworth R, Verma A, Appenzeller O, « Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns », PLOS ONE, vol. 3, no 6,‎ , e2342 (PMID 18523639, PMCID 2396283, DOI 10.1371/journal.pone.0002342, lire en ligne)
  45. Beall CM, « Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia », Integr Comp Biol, vol. 46, no 1,‎ , p. 18–24 (PMID 21672719, DOI 10.1093/icb/icj004)
  46. Beall CM, Decker MJ, Brittenham GM, Kushner I, Gebremedhin A, Strohl KP, « An Ethiopian pattern of human adaptation to high-altitude hypoxia », Proc Natl Acad Sci U S A, vol. 99, no 26,‎ , p. 17215–17218 (PMID 12471159, PMCID 139295, DOI 10.1073/pnas.252649199)
  47. Claydon VE, Gulli G, Slessarev M, Appenzeller O, Zenebe G, Gebremedhin A, Hainsworth R, « Cerebrovascular responses to hypoxia and hypocapnia in Ethiopian high altitude dwellers », Stroke, vol. 39, no 2,‎ , p. 336–342 (PMID 18096845, DOI 10.1161/STROKEAHA.107.491498)
  48. Beall CM, Song K, Elston RC, Goldstein MC, « Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4 000 mètres (13 123,3596 pi) », Proc Natl Acad Sci U S A, vol. 101, no 39,‎ , p. 14300–14304 (DOI 10.1073/pnas.0405949101, lire en ligne)
  49. Native Village Youth and Education news, « Tibetans evolved at fastest pace ever measured », (consulté le )
  50. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R, « Genetic evidence for high-altitude adaptation in Tibet », Science, vol. 329, no 5987,‎ , p. 72–75 (PMID 20466884, DOI 10.1126/science.1189406, lire en ligne)
  51. Hanaoka M, Droma Y, Basnyat B, Ito M, Kobayashi N, Katsuyama Y, Kubo K, Ota M, « Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas », PLOS ONE, vol. 7, no 12,‎ , e50566 (PMID 23227185, PMCID 3515610, DOI 10.1371/journal.pone.0050566, lire en ligne)
  52. Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B, « Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas », Molecular Biology and Evolution, vol. 28, no 2,‎ , p. 1075–81 (PMID 21030426, DOI 10.1093/molbev/msq290, lire en ligne)
  53. MacInnis MJ, Rupert JL, « 'ome on the Range: altitude adaptation, positive selection, and Himalayan genomics », High Alt Med Biol, vol. 12, no 2,‎ , p. 133–139 (PMID 21718161, DOI 10.1089/ham.2010.1090)
  54. van Patot MC, Gassmann M, « Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α », High Alt Med Biol, vol. 12, no 2,‎ , p. 157–167 (PMID 21718164, DOI 10.1089/ham.2010.1099)
  55. Simonson TS, McClain DA, Jorde LB, Prchal JT, « Genetic determinants of Tibetan high-altitude adaptation », Human Genetics, vol. 131, no 4,‎ , p. 527–533 (PMID 22068265, DOI 10.1007/s00439-011-1109-3)
  56. Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, Witherspoon DJ, Xing J, Zhengzhong B, Prchal JT, Jorde LB, McClain DA, « Metabolic insight into mechanisms of high-altitude adaptation in Tibetans », Mol Genet Metab, vol. 106, no 2,‎ , p. 244–247 (PMID 22503288, DOI 10.1016/j.ymgme.2012.03.003)
  57. Zhang YB, Li X, Zhang F, Wang DM, Yu J, « A preliminary study of copy number variation in Tibetans », PLOS ONE, vol. 7, no 7,‎ , e41768 (PMID 22844521, PMCID 3402393, DOI 10.1371/journal.pone.0041768, lire en ligne)
  58. Bigham AW, Wilson MJ, Julian CG, Kiyamu M, Vargas E, Leon-Velarde F, Rivera-Chira M, Rodriquez C, Browne VA, Parra E, Brutsaert TD, Moore LG, Shriver MD, « Andean and Tibetan patterns of adaptation to high altitude », Am J Hum Biol, vol. 25, no 2,‎ , p. 190–197 (PMID 23348729, DOI 10.1002/ajhb.22358)
  59. Zhou D, Udpa N, Ronen R, Stobdan T, Liang J, Appenzeller O, Zhao HW, Yin Y, Du Y, Guo L, Cao R, Wang Y, Jin X, Huang C, Jia W, Cao D, Guo G, Gamboa JL, Villafuerte F, Callacondo D, Xue J, Liu S, Frazer KA, Li Y, Bafna V, Haddad GG, « Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders », Am J Hum Genet, vol. pii, no S0002-9297(13)00331-5,‎ (PMID 23954164, DOI 10.1016/j.ajhg.2013.07.011)
  60. Pleurdeau D, « Human technical behavior in the African Middle Stone Age: The lithic assemblange of Porc-Epic Cave (Dire Dawa, Ethiopia) », African Archaeological Review, vol. 22, no 4,‎ , p. 177–197 (DOI 10.1007/s10437-006-9000-7, lire en ligne)
  61. Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A, « The genetic architecture of adaptations to high altitude in Ethiopia », PLOS Genetics, vol. 8, no 12,‎ , e1003110 (PMID 23236293, PMCID 3516565, DOI 10.1371/journal.pgen.1003110, lire en ligne)
  62. Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Woldemeskel D, Beggs W, Lambert C, Jarvis JP, Abate D, Belay G, Tishkoff SA, « Genetic adaptation to high altitude in the Ethiopian highlands », Genome Biol, vol. 13, no 1,‎ , R1 (PMID 22264333, PMCID 3334582, DOI 10.1186/gb-2012-13-1-r1, lire en ligne)

External links