Polynôme de Jacobi

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant les mathématiques
Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En mathématiques, les polynômes de Jacobi sont une classe de polynômes orthogonaux. Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie :

est le symbole de Pochhammer pour la factorielle croissante, (Abramowitz & Stegun p561.) et ainsi, nous avons l'expression explicite

pour laquelle la valeur finale est

Ici, pour l'entier

et est la fonction gamma usuelle, qui possède la propriété pour . Ainsi,

Les polynômes ont la relation de symétrie  ; ainsi, l'autre valeur finale est

Pour un nombre réel , le polynôme de Jacobi peut être écrit alternativement sous la forme

et .

Dans le cas particulier où les quatre quantités , , et sont des nombres entiers positifs, le polynôme de Jacobi peut être écrit sous la forme

La somme sur s'étend sur toutes les valeurs entières pour lesquelles les arguments des factorielles sont positives.

Cette forme permet l'expression de la matrice D de Wigner () en termes de polynômes de Jacobi[1]

Dérivées[modifier | modifier le code]

La -ème dérivée de l'expression explicite conduit à

Référence[modifier | modifier le code]

  1. L. C. Biedenharn et J. D. Louck, Angular Momentum in Quantum Physics, Addison-Wesley, Reading, (1981)

Article connexe[modifier | modifier le code]

Inégalité d'Askey-Gasper (en)