Discussion:Nano-argent

Le contenu de la page n’est pas pris en charge dans d’autres langues.
Une page de Wikipédia, l'encyclopédie libre.
Autres discussions [liste]
  • Admissibilité
  • Neutralité
  • Droit d'auteur
  • Article de qualité
  • Bon article
  • Lumière sur
  • À faire
  • Archives
  • Commons

Nano-argent, argent colloïdales à partager?[modifier le code]

Bonjour, il semble que dans la version anglo-saxone de Wikipédia le nano-argent et l'argent colloïdales sont 2 articles totalement différents.

http://en.wikipedia.org/wiki/Colloidal_silver

http://en.wikipedia.org/wiki/Silver_Nano

Le premier semble être l'équivalent de notre article en français. Le second semble être une technologie déposée par Samsung. --Lawren00 (d) 1 janvier 2010 à 20:15 (CET)[répondre]

Toute cette partie de là : "L'argent colloïdal est considéré comme un antibiotique naturel le plus puissant qui soit puisqu'il tue 650 microbes, virus, bactéries, champignons."
à là :
"Les médecins rapportent que les 8 cas de malaria traités avec l’ASAP solution ont été complètement guéris en l’espace de 7 jours."
Me semble... comment dirais-je ? Ah oui c'est ça : "un peu orienté". Sans compter qu'elle n'est pas du tout sourcée.

Non neutre[modifier le code]

L'article comportait plusieurs passages faisant clairement la promotion de l'argent colloïdal en citant des sources douteuses (site commercial notamment). Il reste un passage dont le ton me semble suspect dans "Concernant la santé humaine". La section "Risques" quant à elle est bizarrement rédigée. --Intisun (discuter) 11 janvier 2014 à 06:16 (CET)[répondre]

Quelques sources éventuelles à étudier et exploiter[modifier le code]

...et à mettre à jour, pour qui voudrait compléter l'article :

Bibliographique dédiée aux aspects toxicologiques[modifier le code]

  • Arora, S; Jain, J; Rajwade, JM; Paknikar, KM. (2009). Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236: 310-318. http://dx.doi.org/10.1016/j.taap.2009.02.020
  • Carlson, C; Hussain, SM; Schrand, AM; Braydich-Stolle, LK; Hess, KL; Jones, RL; Schlager, JJ. (2008). Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J Phys Chem B 112: 13608-13619.
  • Cha, K; Hong, H; Choi, Y; Lee, MJ; Park, JH; Chae, H; Ryu, G; Myung, H. (2008). Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 30: 1893-1899. http://dx.doi.org/10.1007/s10529-008-9786-2
  • Kim, YJ; Yang, SI; Ryu, JC. (2010). Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol Cell Toxicol 6: 119-125. http://dx.doi.org/10.1007/s13273-010-0018-1
  • Kim, YS; Kim, JS; Cho, HS; Rha, DS; Kim, JM; Park, JD; Choi, BS; Lim, R; Chang, HK; Chung, YH; Kwon, IH; Jeong, J; Han, BS; Yu, IJ. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20: 575-583.
  • Lee, HY; Choi, YJ; Jung, EJ; Yin, HQ; Kwon, JT; Kim, JE; Im, HT; Cho, MH; Kim, JH; Kim, HY; Lee, BH. (2010). Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J Nanopart Res 12: 1567-1578. http://dx.doi.org/10.1007/s11051-009-9666-2
  • Li, P; Kuo, T; Chang, J; Yeh, J; Chan, W. (2010). Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 197: 82-87. http://dx.doi.org/10.1016/j.toxlet.2010.05.003
  • Lu, W; Senapati, D; Wang, S; Tovmachenko, O; Singh, AK; Yu, H; Ray, PC. (2010). Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487: 92-96. http://dx.doi.org/10.1016/j.cplett.2010.01.027
  • MINCharInitiative (Minimum Information on Nanoparticle Characterization) (2008). Recommended minimum physical and chemical parameters for characterizing nanomaterials on toxicology studies. Washington, DC: The Minimum Information for Nanomaterial Characterization Initiative. http://characterizationmatters.org/parameters/
  • Paddle-Ledinek, JE; Nasa, Z; Cleland, HJ. (2006). Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg 117: 110S-118S; discussion 119S-120S. http://dx.doi.org/10.1097/01.prs.0000225439.39352.ce
  • Park, EJ; Bae, E; Yi, J; Kim, Y; Choi, K; Lee, SH; Yoon, J; Lee, BC; Park, K. (2010). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30: 162-168. http://dx.doi.org/10.1016/j.etap.2010.05.004
  • Rosas-Hernández, H; Jiménez-Badillo, S; Martínez-Cuevas, PP; Gracia-Espino, E; Terrones, H; Terrones, M; Hussain, SM; Ali, SF; González, C. (2009). Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett 191: 305-313. http://dx.doi.org/10.1016/j.toxlet.2009.09.014
  • Samberg, ME; Oldenburg, SJ; Monteiro-Riviere, NA. (2010). Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118: 407-413. http://dx.doi.org/10.1289/ehp.0901398
  • Shin, YM; Kim, HS; Kang, HS. (2007). The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cell. Int Immunopharmacol 7: 1813-1818.
  • Shrivastava, S; Bera, T; Singh, SK; Singh, G; Ramachandrarao, P; Dash, D. (2009).Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3: 1357-1364. http://dx.doi.org/10.1021/nn900277t
  • Sung, JH; Ji, JH; Park, JD; Yoon, JU; Kim, DS; Jeon, KS; Song, MY; Jeong, J; Han, BS; Han, JH; Chung, YH; Chang, HK; Lee, JH; Cho, MH; Kelman, BJ; Yu, IJ. (2009). Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108: 452-461. http://dx.doi.org/10.1093/toxsci/kfn246
  • Tiwari, DK; Jin, T; Behari, J. (2011). Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Meth 21: 13-24. http://dx.doi.org/10.3109/15376516.2010.529184
  • Trickler, W; Lantz, S; Murdock, R; Schrand, A; Robinson, B; Newport, G; Schlager, J; Oldenburg, S; Paule, M; Slikker, W; Hussain, S; Ali, S. (2010). Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118: 160-170. http://dx.doi.org/10.1093/toxsci/kfq244

Aspects écotoxicologiques[modifier le code]

  • Ahamed, M; Posgai, R; Gorey, T; Nielsen, M; Hussain, S; Rowe, J. (2010). Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263-269. http://dx.doi.org/10.1016/j.taap.2009.10.016
  • Allen, H; Impellitteri, C; Macke, D; Heckman, J; Poynton, H; Lazorchak, J; Govindaswamy, S; Roose, D; Nadagouda, M. (2010). Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29: 2742-2750. http://dx.doi.org/10.1002/etc.329
  • Babu, K; Deepa, MA; Shankar, SG; Rai, S. (2008). Effect of nano-silver on cell division and mitotic chromosomes: A prefatory siren. IJNT 2: 1.
  • Bae, E; Park, HJ; Lee, J; Kim, Y; Yoon, J; Park, K; Choi, K; Yi, J. (2010). Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environ Toxicol Chem 29: 2154-2160. http://dx.doi.org/10.1002/etc.278
  • Bilberg, K; Malte, H; Wang, T; Baatrup, E. (2010). Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol In Press, Corrected Proof: 159-165. http://dx.doi.org/10.1016/j.aquatox.2009.10.019
  • Bradford, A; Handy, RD; Readman, JW; Atfield, A; Mühling, M. (2009).Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43: 4530-4536. http://dx.doi.org/10.1021/es9001949
  • Chae, Y; Pham, C; Lee, J; Bae, E; Yi, J; Gu, M. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94: 320-327. http://dx.doi.org/10.1016/j.aquatox.2009.07.019
  • Choi, O; Clevenger, TE; Deng, B; Surampalli, RY; Ross, L, Jr; Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43: 1879-1886.
  • Choi, O; Deng, KK; Kim, NJ; Ross, L, Jr; Surampalli, RY; Hu, Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42: 3066-3074.
  • Choi, O; Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42: 4583-4588.
  • Dasari, T; Hwang, H. (2010). The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ 408: 5817-5823. http://dx.doi.org/10.1016/j.scitotenv.2010.08.030
  • Eaton, AD; Clesceri, LS; Rice, EW; Greenberg, AE; Franson, MAH. (2005). Standard Methods for the Examination of Water and Wastewater. In AD Eaton; LS Clesceri; EW Rice; AE Greenberg; MAH Franson (Eds.), (21 ed.). Denver, CO: American Water Works Association.
  • El Badawy, A; Silva, R; Morris, B; Scheckel, K; Suidan, M; Tolaymat, T. (2011). Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45: 283-287. http://dx.doi.org/10.1021/es1034188
  • El Badawy, AME; Luxton, TP; Silva, RG; Scheckel, KG; Suidan, MT; Tolaymat, TM. (2010). Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44: 1260-1266. http://dx.doi.org/10.1021/es902240k
  • Farkas, J; Christian, P; Gallego-Urrea, J; Roos, N; Hassellöv, M; Tollefsen, K; Thomas, K. (2011). Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Reprod Toxicol 101: 117-125. http://dx.doi.org/10.1016/j.aquatox.2010.09.010
  • Gao, J; Wang, Y; Hovsepyan, A; Bonzongo, J. (2011). Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments. J Hazard Mater 186: 940-945. http://dx.doi.org/10.1016/j.jhazmat.2010.11.084
  • Gao, J; Youn, S; Hovsepyan, A; Llaneza, VL; Wang, Y; Bitton, G; Bonzongo, JC. (2009). Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: Effects of water chemical composition. Environ Sci Technol 43: 3322-3328.
  • Griffitt, RJ; Luo, J; Gao, J; Bonzongo, JC; Barber, DS. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27: 1972-1978.
  • Grodzik, M; Sawosz, E. (2006). The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. J Anim Feed Sci 15: 111-114.
  • Heckmann, L; Hovgaard, M; Sutherland, D; Autrup, H; Besenbacher, F; Scott-Fordsmand, J. (2011). Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20:226-233. http://dx.doi.org/10.1007/s10646-010-0574-0
  • Hinther, A; Vawda, S; Skirrow, R; Veldhoen, N; Collins, P; Cullen, J; van Aggelen, G; Helbing, C. (2010). Nanometals induce stress and alter thyroid hormone action in amphibia at or below North American water quality guidelines. Environ Sci Technol 44: 8314-8321. http://dx.doi.org/10.1021/es101902n
  • Hwang, ET; Lee, JH; Chae, YJ; Kim, YS; Kim, BC; Sang, BI; Gu, MB. (2008).Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4: 746-750.
  • Ivask, A; Bondarenko, O; Jepihhina, N; Kahru, A. (2010). Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent * Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398: 701-716. http://dx.doi.org/10.1007/s00216-010-3962-7
  • Jin, X; Li, M; Wang, J; Marambio-Jones, C; Peng, F; Huang, X; Damoiseaux, R; Hoek, E. (2010). Highthroughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: Influence of specific ions. Environ Sci Technol 44: 7321-7328. http://dx.doi.org/10.1021/es100854g
  • Kelly, SP; Fletcher, M; Pärt, P; Wood, CM. (2000). Procedures for the preparation and culture of 'reconstructed' rainbow trout branchial epithelia Meth Cell Sci 22: 153-163.
  • Kennedy, A; Hull, M; Bednar, A; Goss, J; Gunter, J; Bouldin, J; Vikesland, P; Steevens, J. (2010). Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol 44: 9571-9577. http://dx.doi.org/10.1021/es1025382
  • Khan, S; Mukherjee, A; Chandrasekaran, N. (2011). Silver nanoparticles tolerant bacteria from sewage environment. J Environ Sci 23: 346-352. http://dx.doi.org/10.1016/S1001-0742(10)60412-3
  • Kim, KJ; Sung, WS; Suh, BK; Moon, SK; Choi, JS; JG, K; Lee, DG. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235-242.
  • Kumari, M; Mukherjee, A; Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407: 5243-5246. http://dx.doi.org/10.1016/j.scitotenv.2009.06.024
  • Kvítek, L; Panáček, A; Soukupová, J; Kolář, M; Večeřová, R; Prucek, R; Holecová, M; R, Z. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112: 5825-5834. http://dx.doi.org/10.1021/jp711616v
  • Kvitek, L; Vanickova, M; Panacek, A; Soukupova, J; Dittrich, M; Valentova, E; Prucek, R; Bancirova, M; Milde, D; Zboril, R. (2009).Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem B 113: 4296-4300.
  • Laban, G; Nies, L; Turco, R; Bickham, J; Sepúlveda, M. (2009). The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19: 185-195. http://dx.doi.org/10.1007/s10646-009-0404-4
  • Lapied, E; Moudilou, E; Exbrayat, J; Oughton, D; Joner, E. (2010). Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta). Nanomed 5: 975-984. http://dx.doi.org/10.2217/nnm.10.58
  • Li, T; Albee, B; Alemayehu, M; Diaz, R; Ingham, L; Kamal, S; Rodriguez, M; Bishnoi, S. (2010). Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna Anal Bioanal Chem 398: 689-700. http://dx.doi.org/10.1007/s00216-010-3915-1
  • Lok, CN; Ho, CM; Chen, R; He, QY; Yu, WY; Sun, HZ; Tam, PKH; Chiu, JF. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916-924. http://dx.doi.org/10.1021/pr0504079
  • Martinez-Gutierrez, F; Olive, P; Banuelos, A; Orrantia, E; Nino, N; Sanchez, E; Ruiz, F; Bach, H; Av-Gay, Y. (2010). Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed 6: 681-688. http://dx.doi.org/10.1016/j.nano.2010.02.001
  • Meyer, J; Lord, C; Yang, X; Turner, E; Badireddy, A; Marinakos, S; Chilkoti, A; Wiesner, M; Auffan, M. (2010). Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100: 140-150. http://dx.doi.org/10.1016/j.aquatox.2010.07.016
  • Miao, AJ; Schwehr, K; Xu, C; Zhang, AJ; Luo, Z; Quigg, A. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157: 3034-3041. http://dx.doi.org/10.1016/j.envpol.2009.05.047
  • MINCharInitiative (Minimum Information on Nanoparticle Characterization). (2008). Recommended minimum physical and chemical parameters for characterizing nanomaterials on toxicology studies. Washington, DC: The Minimum Information for Nanomaterial Characterization Initiative. http://characterizationmatters.org/parameters/
  • Morones, JR; Elechiguerra, JL; Camacho, A; Holt, K; Kouri, JB; Ramirez, JT; Yacaman, MJ. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. http://dx.doi.org/10.1088/0957-4484/16/10/059
  • Nair, P; Park, S; Lee, S; Choi, J. (2011). Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101: 31-37. http://dx.doi.org/10.1016/j.aquatox.2010.08.013
  • Navarro, E; Piccapietra, F; Wagner, B; Marconi, F; Kaegi, R; Odzak, N; Sigg, L; Behra, R. (2008). Toxicity ofsilver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42: 8959-8964. http://dx.doi.org/10.1021/es801785m
  • Pal, S; Tak, YK; Song, JM. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle ? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73: 1712-1720. http://dx.doi.org/10.1128/aem.02218-06
  • Park, M; Kim, K; Lee, H; Kim, J; Hwang, S. (2010). Selective inhibitory potential of silver nanoparticles on the harmful cyanobacterium Microcystis aeruginosa. Biotechnol Lett 32: 423-428. http://dx.doi.org/10.1007/s10529-009-0161-8
  • Ringwood, A; McCarthy, M; Bates, T; Carroll, D. (2010).The effects of silver nanoparticles on oyster embryos. Neurotoxicol Teratol 69: S49-S51. http://dx.doi.org/10.1016/j.marenvres.2009.10.011
  • Roh, JY; Sim, SJ; Yi, J; Park, K; Chung, KH; Ryu, DY; Choi, J. (2009). Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933-3940.
  • Rostami, AA; Shahsavar, A. (2009). Nano-silver particles eliminate the in vitro contaminations of olive 'mission' expiants. Asian J Plant Sci 8: 1-5.
  • Sap-Iam, N; Homklincha, C; Larpudomle, R; Warisnoich, W; Sereemaspu, A; Dubas, ST. (2010). UV irradiation-induced silver nanoparticles as mosquito larvicides. Journal of Applied Sciences 10: 3132-3136. http://dx.doi.org/10.3923/jas.2010.3132.3136
  • Saulou, C; Jamme, F; Maranges, C; Fourquaux, I; Despax, B; Raynaud, P; Dumas, P; Mercier-Bonin, M. (2010). Synchrotron FTIR microspectroscopy of the yeast Saccharomyces cerevisiae after exposure to plasma-deposited nanosilver-containing coating. Anal Bioanal Chem 396: 1441-1450. http://dx.doi.org/10.1007/s00216-009-3316-5
  • Sawosz, E; Binek, M; Grodzik, M; Zielinska, M; Sysa, P; Szmidt, M; Niemiec, T; Chwalibog, A. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr 61: 444-451.
  • Schreer, A; Tinson, C; Sherry, JP; Schirmer, K. (2005). Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Anal Biochem 344: 76-85. http://dx.doi.org/10.1016/j.ab.2005.06.009
  • Scown, T; Santos, E; Johnston, B; Gaiser, B; Baalousha, M; Mitov, S; Lead, J; Stone, V; Fernandes, T; Jepson, M; van Aerle, R; Tyler, C. (2010). Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115: 521-534. http://dx.doi.org/10.1093/toxsci/kfq076
  • Shahbazzadeh, D; Ahari, H; Rahimi, NM; Dastmalchi, F; Soltani, M; Fotovat, M; Rahmannya, J; Khorasani, N. (2009). The effects of nanosilver (Nanocid(R)) on survival percentage of rainbow trout (Oncorhynchus mykiss). Pakistan J Nutr 8: 1178-1179.
  • Shoults-Wilson, WA; Zhurbich, OI; Mcnear, DH; Tsyusko, OV; Bertsch, PM; Unrine, JM. (2011). Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20: 385-396.http://dx.doi.org/10.1007/s10646-010-0590-0
  • Shrivastava, S; Bera, T; Roy, A; Singh, G; Ramachandrarao, P; Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18: 1-9. http://dx.doi.org/10.1088/0957-4484/18/22/225103
  • Sinha, R; Karan, R; Sinha, A; Khare, SK. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102: 1516-1520. http://dx.doi.org/10.1016/j.biortech.2010.07.117
  • Sondi, I; Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275: 177-182. http://dx.doi.org/10.1016/j.jcis.2004.02.012
  • Sotiriou, GA; Pratsinis, SE. (2010). Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44: 5649-5654. http://dx.doi.org/10.1021/es101072s
  • Stampoulis, D; Sinha, S; White, J. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43: 9473-9479. http://dx.doi.org/10.1021/es901695c
  • Wu, Y; Zhou, Q; Li, H; Liu, W; Wang, T; Jiang, G. (2010). Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100: 160-167. http://dx.doi.org/10.1016/j.aquatox.2009.11.014