Composé aromatique

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Aromaticité)
Aller à : navigation, rechercher

Un composé aromatique est un composé organique qui contient un système cyclique respectant la règle d'aromaticité de Hückel : le système cyclique doit être plan et posséder (4n + 2) électrons délocalisés dans un système cyclique, n étant le nombre de cycles constituant le système cyclique. Si le cycle contient un élément autre que du carbone, on parle d'hétérocycle aromatique.

L'aromaticité du benzène[modifier | modifier le code]

Le modèle des hydrocarbures aromatiques est le benzène C6H6, constitué d'un cycle à 6 atomes de carbone formant un hexagone régulier et comportant six électrons délocalisés. La représentation de ce système est un hexagone dans lequel trois liaisons doubles alternent avec trois liaisons simples. Les six liaisons sont de longueur identique, intermédiaire entre les longueurs de la simple et de la double liaison.

Formes mésomères du benzène

Le modèle développé par Kékulé pour le benzène consiste en deux formes mésomères, qui correspondent aux liaisons doubles et simples changeant de positions. Une autre représentation est celle de la liaison π au-dessus ou sous l'anneau. Ce modèle représente plus correctement la position de la densité d'électron dans l'anneau aromatique.

Définition théorique[modifier | modifier le code]

Un composé organique est dit aromatique quand il satisfait aux conditions suivantes :

  1. présence d'un cycle comportant un système π conjugué, formé de liaisons doubles et/ou de doublets non-liants ;
  2. chaque atome du cycle comporte une orbitale p ;
  3. les orbitales p se recouvrent (système π conjugué), la molécule étant plane au niveau de ce composé cyclique ;
  4. la délocalisation des électrons π entraîne une diminution de l'énergie de la molécule.

Si les trois premiers critères sont satisfaits, mais que la délocalisation entraînerait une augmentation de l'énergie, le composé est dit anti-aromatique.

En pratique, le 4e critère est traduit par la règle de Hückel : la délocalisation entraîne une diminution de l'énergie de la molécule (et donc, une stabilisation de cette dernière) si le nombre d'électrons π est égal à (4n+2), où n est un entier positif ou nul. À l'inverse, les composés anti-aromatiques (lorsque la délocalisation des électrons entraîne une augmentation de l'énergie, et donc une perte de stabilité) possèdent 4n électrons π. Cette règle est valable pour les composés relativement simples, possédant au plus quelques cycles, au-delà, il faut avoir recours à d'autres méthodes, semi-empiriques ou faisant appel à la mécanique quantique.

En présence d'un composé cyclique avec des liaisons π conjuguées dont la délocalisation des électrons π entraîne une énergie similaire, on est en présence d'un composé non-aromatique, soit aliphatique.

Les fullerènes comme le C60 ont des propriétés aromatiques, bien qu'ils ne soient pas globalement plans.

Énergie de stabilisation[modifier | modifier le code]

Nom Formule brute Énergie de stabilisation ( kJ⋅mol-1)
Benzène C6H6 150
Furane C4H4O 16
Pyrrole C4H5N 16
Thiophène C4H4S 17
Pyridine C5H5N 2,26
Naphtalène C10H8 71
Indole C8H7N 48
Quinoléine C9H7N 55
Anthracène C14H10 104
Carbazole C12H9N 83
Acridine C13H9N 107

Familles d'aromatiques[modifier | modifier le code]

Les dérivés du benzène[modifier | modifier le code]

Les composés ci-dessous comportent un seul cycle aromatique à six atomes de carbone :

Les hétérocycles aromatiques[modifier | modifier le code]

Les hétérocycles sont une classe de composés dans lesquels un ou plusieurs atome(s) de carbone d'un composé cyclique est remplacé par un élément dit hétérogène comme l'oxygène, l'azote, le phosphore, le soufreetc. Les hétérocycles les plus courants contiennent un atome d'azote ou d'oxygène, comme par exemple :

Les aromatiques polycycliques[modifier | modifier le code]

Quelques arènes importants sont appelés HAP, hydrocarbure aromatique polycyclique (PAH en anglais). Ils sont composés de 4 à 7 cycles. Un HAP connu est le benzopyrène qui est très cancérigène. Les HAP forment une vaste famille de composés aux propriétés similaires.

Les HAP existent à l'état naturel dans le pétrole brut : on les appelle les hydrocarbures pétrogéniques. Ils se caractérisent par une forte proportion d'hydrocarbures aromatiques ramifiés, c'est-à-dire, substitués par des groupements alkyles. La pyrolyse et la combustion incomplète de matières organiques, comme l’incinération des déchets, la combustion du bois, du charbon, le fonctionnement des moteurs à essence ou des moteurs diesels produisent aussi des HAP : on les appelle les hydrocarbures pyrogéniques. La combustion des cigarettes produit des HAP et contribue à la présence d'HAPs dans les bâtiments. Ces HAP, liés à l'activité humaine, sont peu ramifiés et ce sont surtout ceux-là qui sont présents dans notre environnement, généralement sous forme de mélanges plus ou moins complexes.

La présence de HAP dans l'environnement est préoccupante, essentiellement à cause de leurs propriétés cancérigènes. C'est le cas tout particulièrement le cas du benzopyrène, du benzoanthracène, du benzofluoranthène, de l'indéno pyrène et du benzopérylène.

La plupart des HAP sont assez résistants à la biodégradation. Cette dégradation se fait dans les couches superficielles du sol, grâce notamment à l'action de certaines bactéries. La majorité des HAP présents dans les eaux de surface ont une origine atmosphérique et, pour la plupart, sont adsorbés sur les sédiments.

Les hydrocarbures aromatiques polycycliques pourraient être présents dans les poussières interstellaires. Ces molécules sont très résistantes aux conditions hostiles existant dans le milieu interstellaire et présentent des spectres en accord avec les raies observées dans les poussières interstellaires, notamment aux longueurs d'onde de 6,2 / 7,7 / 8,3 / 11,3 et 12,8 µm. Formées d'une vingtaine à quelques centaines d'atomes, ces molécules sont nettement plus grandes que les autres molécules détectées dans le milieu interstellaire.

En 1994, Moreels proposa la présence de phénanthrène dans la comète de Halley pour expliquer la raie à 3,28 µm, raie aussi observée dans plusieurs autres comètes[1].


Notes et références[modifier | modifier le code]

  1. Bockelée-Morvan et al., 1995.

Articles connexes[modifier | modifier le code]