Algorithme de Goertzel

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

L'algorithme de Goertzel est un algorithme utilisé en traitement du signal pour détecter la présence d'une fréquence dans une séquence d'échantillons. Il fut publié par le physicien américain, Gerald Goertzel (en), en 1958[1]. Il s'agit d'une méthode efficace pour évaluer un terme particulier de la transformée de Fourier discrète; elle ne nécessite qu'une multiplication et deux additions par échantillon.

Pseudo-code[2][modifier | modifier le code]


N = taille_du_bloc ; 
samples[N]; // échantillons 
FI = fréquence_à_détecter; 
FS = fréquence_échantillonnage; 
k = (int)(0.5 + (N*FI/FS)); 
ω = 2 * π * k / N; 
cosine = cos(ω); 
sine = sin(ω); 
coeff = 2 * cos(ω); 
scale = N / 2; 

Q0 = Q1 = Q2 = 0; 

pour i de 0 à N-1 
  Q0 = samples[i] + (coefficient * Q1) - Q2;
  Q2 = Q1; 
  Q1 = Q0; 
end 

real = (Q0 - (Q1 * cosine)) / scale; 
imag = (- Q1 * sine) / scale; 
puissance = sqrt(real * real + imag * imag); 

Code C++[modifier | modifier le code]


#define PI 3.14159265358979323846 
#define buffer_size 44100 
double samples[buffer_size]; 
double FS = 44100.0; //fréquence d'échantillonnage 
double FDETECT = 1000.0; // fréquence à détecter 

int K; 
double coefficient; 
double W; 
double sine; 
double cosine; 
double Q0, Q1, Q2; 
double real; 
double imag; 
double magnitude; 
double scalingFactor; 
int i; 

K = (int) (0.5 + ((buffer_size * FDETECT) / FS));
W = (2.0 * PI * K) / buffer_size; 
cosine = cos(W); 
sine = sin(W); 
coefficient = 2 * cos(W); 
scalingFactor = buffer_size / 2.0; 

Q0 = 0; 
Q1 = 0; 
Q2 = 0; 
	
for (i=0 ; i<buffer_size ; i++) 
 {
  Q0 = samples[i] + (coefficient * Q1) - Q2;
  Q2 = Q1;
  Q1 = Q0;
 }
real = (Q0 - (Q1 * cosine)) / scalingFactor; 
imag = (- Q1 * sine) / scalingFactor;	
magnitude = sqrt(real * real + imag * imag);

Voir aussi[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. Gerald Goertzel, An Algorithm for the Evaluation of Finite Trigonometric Series, The American Mathematical Monthly, Vol. 65, No. 1 (janvier 1958), pp. 34-35
  2. Kenvin Banks, « "The Goertzel algorithm" »,