Plongement de Segre

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Le plongement de Segre est, en géométrie algébrique, un morphisme qui identifie le produit fibré de deux espaces projectifs à une variété projective. Une conséquence en est que le produit fibré de deux variétés projectives est une variété projective.

Le cas des espaces projectifs[modifier | modifier le code]

On fixe un corps et deux entiers naturels et on considère le produit fibré des espaces projectifs de dimensions respectives . Alors il existe un morphisme de variétés algébriques

qui est une immersion fermée (i.e. induit un isomorphe sur son image qui est une sous-variété fermée de ). De plus, au niveau des points rationnels, on a

Cette immersion est appelée le plongement de Segre.

De façon formelle, ce morphisme peut être construit localement sur un recouvrement affine. En effet est la réunion des , et est recouvert par les ouverts affines . Sur , le morphisme est le morphisme de variétés affines

correspondant au morphisme surjectif de -algèbres

Exemple[modifier | modifier le code]

Si , alors identifie le produit des droites projectives à son image dans , laquelle est la quadrique d'équation

Cas général[modifier | modifier le code]

Soient des variétés projectives sur . Par définition, elles sont isomorphes respectivement à des sous-variétés fermées de et . Alors le produit fibré est isomorphe à une sous-variété fermée de . Comme celle-ci est une variété projective par le plongement de Segre, on en déduit que est aussi une variété projective.