Aller au contenu

Moments de Hausdorff

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 11 avril 2021 à 14:40 et modifiée en dernier par 2a01:e0a:96f:e640:8108:5cc2:914:a836 (discuter). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

En mathématiques, le problème des moments de Hausdorff est celui des conditions nécessaires et suffisantes pour qu'une suite (mn) de réels soit la suite des moments

d'une mesure de Borel sur le segment [0, 1].

Le nom du problème est associé au mathématicien allemand Felix Hausdorff.

Dans le cas m0 = 1, ceci équivaut à l'existence d'une variable aléatoire réelle X dans l'intervalle [0, 1] telle que pour tout n, l'espérance de Xn soit égale à mn.

Ce problème est voisin du problème des moments de Stieljes défini sur l'intervalle , celui de Toeplitz sur et celui de Hamburger sur mais à la différence de ceux-ci, la solution, si elle existe, est unique.

Il a été étendu aux espaces bidimensionnels[1] et aux suites tronquées[2].

Séries monotones

[modifier | modifier le code]

Hausdorff a montré[3],[4] qu'il existe une solution si et seulement si la suite (mn) est complètement monotone, c'est-à-dire si ses suites de différences satisfont

pour tout n, k ≥ 0, où Δ est l'opérateur différence finie donné par

Une telle condition est nécessaire, en effet

.

Par exemple

.

L'unicité de se déduit du théorème d'approximation de Weierstrass :

Suite tronquée

[modifier | modifier le code]

Les problèmes d'approximation en physique conduisent à l'usage de suites tronquées . Dans ce cas, si l'on définit les matrices de Hankel suivantes

la condition nécessaire et suffisante d'existence sur est[2]

  • pour
  • pour

Références

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Hausdorff moment problem » (voir la liste des auteurs).
  1. (en) James Alexander Shohat et Jacob Tamarkin, The Problem of Moments, AMS, coll. « Mathematical Surveys and Monographs » (no 1), (ISBN 0-8218-1501-6, lire en ligne).
  2. a et b (en) M. G. Krein et A. A. Nudelman (trad. du russe), The Markov Moment Problem and Extremal Problems, AMS, coll. « Transl. Math. Monographs » (no 50), , cités par (en) Raul E. Curto et Lawrence A. Fialkow, « Recursiveness, Positivity, and Truncated Moment Problems », Houston Journal of Mathematics, vol. 17, no 4,‎ (lire en ligne).
  3. (de) F. Hausdorff, « Summationsmethoden und Momentfolgen. I. », Mathematische Zeitschrift, vol. 9,‎ , p. 74-109.
  4. (de) F. Hausdorff, « Summationsmethoden und Momentfolgen. II. », Mathematische Zeitschrift, vol. 9,‎ , p. 280-299.
  • (en) William Feller, An Introduction to Probability Theory and Its Applications, vol. 2, John Wiley & Sons,
  • (en) Naum Akhiezer (trad. du russe par N. Kemmer), The Classical Moment Problem and Some Related Questions in Analysis, New York, Hafner Publishing,

Article connexe

[modifier | modifier le code]

Méthode des moments (physique statistique)