Aller au contenu

Dîner des philosophes

Un article de Wikipédia, l'encyclopédie libre.

Le problème du « dîner des philosophes » illustre le partage de ressources dans les systèmes informatiques en mettant en scène des philosophes qui doivent se partager des fourchettes pour pouvoir déguster des spaghettis. Le problème consiste à identifier les conditions de partage impossible qui surviennent lorsque plusieurs philosophes essaient de saisir leurs fourchettes simultanément.

Il concerne l'ordonnancement des processus et l'allocation des ressources à ces derniers et a été énoncé par Edsger Dijkstra[1].

Énoncé du problème

[modifier | modifier le code]
Illustration du problème

La situation est la suivante :

  • Cinq philosophes (initialement, mais il peut y en avoir beaucoup plus) se trouvent autour d'une table ;
  • Chacun des philosophes a devant lui un plat de spaghettis ;
  • À gauche de chaque plat de spaghettis se trouve une fourchette.

Un philosophe n'a que trois états possibles, associés aux actions suivantes :

  • Penser pendant un temps indéterminé ;
  • Être affamé durant un temps déterminé et fini (sinon il y a famine) ;
  • Manger pendant un temps déterminé et fini.

Des contraintes extérieures s'imposent à cette situation :

  • Pour manger, un philosophe a besoin de deux fourchettes : celle qui se trouve à gauche de sa propre assiette, et celle qui se trouve à droite (c'est-à-dire les deux fourchettes qui entourent sa propre assiette) ;
  • Quand un philosophe a faim, il va se mettre dans l'état « affamé » et attendre que les fourchettes soient libres ;
  • Si un philosophe n'arrive pas à s'emparer d'une fourchette, il reste affamé pendant un temps déterminé, en attendant de renouveler sa tentative.

Le problème consiste à trouver un ordonnancement des philosophes tel qu'ils puissent tous manger, chacun à leur tour. Cet ordre est imposé par la solution que l'on considère comme celle de Dijkstra avec sémaphores ou Courtois avec des compteurs.

Le problème du crash de processus : Socrate boit la ciguë et meurt avec sa fourchette gauche en main, empêchant définitivement Voltaire de manger.
  • Les philosophes, s'ils agissent tous de façon naïve et identique, risquent fort de se retrouver en situation d'interblocage. En effet, il suffit que chacun saisisse sa fourchette de gauche et, qu'ensuite, chacun attende que sa fourchette de droite se libère pour qu'aucun d'entre eux ne puisse manger, et ce, pour l'éternité.
  • On considère qu'un philosophe qui meurt (crash du processus) reste dans une phase « penser » infiniment. Il en résulte donc un problème : que dire d'un philosophe qui meurt avec ses fourchettes en main ?
  • Pour plus de compréhension, ce problème est aussi connu sous le nom de "problème des baguettes chinoises", où le philosophe a besoin de deux baguettes pour pouvoir manger. En effet, l'utilisation de deux fourchettes pour manger porte à sourire, bien que la facétie des philosophes ne soit plus à prouver.
Le diner des philosophes modélisé en réseau de Petri
  • L'une des principales solutions à ce problème est celle du sémaphore, proposée également par Dijkstra.
  • Une autre solution consiste à attribuer à chaque philosophe un temps de réflexion aléatoire en cas d'échec (cette solution est en réalité incorrecte).
  • Il existe des compromis qui permettent de limiter le nombre de philosophes gênés par une telle situation, notamment une toute simple se basant sur la technique hiérarchique de Havender qui limite le nombre de philosophes touchés à un d'un côté et deux de l'autre.

La solution de Chandy/Misra

[modifier | modifier le code]

En 1984, K. M. Chandy et J. Misra proposèrent une nouvelle solution permettant à un nombre arbitraire n d'agents identifiés par un nom quelconque d'utiliser un nombre m de ressources. Le protocole élégant et générique est le suivant :

  1. Pour chaque paire de philosophes pouvant accéder à la même fourchette, on commence par la donner à celui des deux qui a le plus petit nom (selon une certaine relation d'ordre). Toute fourchette est soit propre, soit sale. Au début, toutes les fourchettes sont sales.
  2. Lorsqu'un philosophe veut manger, il doit obtenir les fourchettes de ses deux voisins. Pour chaque fourchette qui lui manque, il émet poliment une requête.
  3. Lorsqu'un philosophe qui a une fourchette en main entend une requête pour celle-ci,
    • soit la fourchette est propre et il la garde.
    • soit la fourchette est sale, alors il la nettoie et il la donne.
  4. Après qu'un philosophe a fini de manger, ses deux fourchettes sont devenues sales. Si un autre philosophe avait émis une requête pour obtenir une de ses fourchettes, il la nettoie et la donne.

Solution dans le cas pair

[modifier | modifier le code]

Dans le cas pair, une solution simple existe. Numéroter les philosophes selon leur place à la table, et les séparer en deux groupes, pairs et impairs. L'un des groupes commence par prendre la fourchette gauche puis la droite, le deuxième groupe fait l'inverse.

Preuve de l'exactitude de cette solution

[modifier | modifier le code]

Étudions le cas d'un philosophe qui prend d'abord sa fourchette gauche. S'il y arrive, il ne lui reste plus qu'à prendre sa fourchette droite. Celle-ci ne peut être définitivement bloquée : si le philosophe de droite la tient, c'est qu'il est en train de manger (il tient dans ce cas ses deux fourchettes). Ainsi nos philosophes ne se bloqueront jamais.

La compréhension de cette solution est plus aisée en prenant pour exemple la présence de deux philosophes.

Notes et références

[modifier | modifier le code]
  1. (en) Edsger W. Dijkstra, « Hierarchical ordering of sequential processes », Acta Informatica, vol. 1,‎ , p. 115-138 (lire en ligne, consulté le )

Articles connexes

[modifier | modifier le code]

Lien externe

[modifier | modifier le code]