Vecteur propre
Apparence
Soit u un opérateur linéaire sur un espace vectoriel E. Un vecteur propre v de u est un vecteur v non nul de E tel que u(v) = a·v pour un scalaire a, qui est la valeur propre correspondante.
Par exemple, soit l'espace vectoriel réel E des fonctions C∞ de ℝ dans ℝ et soit u l'opérateur de dérivation, u(f) = f'. Alors les vecteurs propres de u sont les fonctions x ↦ c·eax (c ≠ 0).