Utilisateur:Arnaud Courteaux/Brouillon

Une page de Wikipédia, l'encyclopédie libre.

Modèle:En Travaux

traduction en cours

Le niobium-étain, aussi appelé triniobium-étain, est un composé chimique métallique constitué de niobium (Nb) et d'étain (Sn) de formule brute Nb3Sn. Ce composé intermétallique fait partie de la famille des A15 phases (en) et est utilisé comme un élément supraconducteur de type 2.


Unity cell of the A15 phases of Nb3Sn




The critical temperature is 18,3 kelvins ( Unité «  » inconnue du modèle {{Conversion}}.). Application temperatures are commonly around 4.2 K, the boiling point of liquid helium at atmospheric pressure.

In April 2008 a record non-copper current density was claimed of 2,643 A/mm² at 12 T and 4,2 K (−268,95 °C; −452,11 °F).[1]

Practical use[modifier | modifier le code]

Mechanically, Nb3Sn is extremely brittle and thus can not be easily drawn into a wire, which is necessary for winding superconducting magnets. To overcome this, wire manufacturers typically draw down composite wires containing ductile precursors. The "internal tin" process includes separate alloys of Nb, Cu and Sn. The "bronze" process contains Nb in a copper-tin bronze matrix. With both processes the strand is typically drawn to final size and coiled into a solenoid or cable before heat treatment. It is only during the heat treatment that the Sn reacts with the Nb to form the brittle, superconducting niobium-tin compound.[2] The powder-in-tube process is also used.[1][3]

The high field section of modern NMR magnets are composed of niobium-tin wire.

Some niobium-tin wires can be wound after heat treatment.

History[modifier | modifier le code]

Nb3Sn was discovered to be a superconductor in 1954, one year after the discovery of V3Si, the first example of an A3B superconductor.[4] In 1961 it was discovered that niobium-tin still exhibits superconductivity at large currents and strong magnetic fields, thus becoming the first known material to support the high currents and fields necessary for making useful high-power magnets and electric power machinery.[5][6]

Notable uses[modifier | modifier le code]

The central solenoid and toroidal field superconducting magnets for the planned experimental ITER fusion reactor use niobium-tin as a superconductor.[7] The central solenoid coil will produce a field of 13,5 Unité « T » inconnue du modèle {{Conversion}}. ( Unité «  » inconnue du modèle {{Conversion}}.). The toroidal field coils will operate at a maximum field of 11.8 T. Estimated use is 600 Unité « MT » inconnue du modèle {{Conversion}}. ( Unité « LT » inconnue du modèle {{Conversion}}.) of Nb3Sn strands and 250 metric tonnes of NbTi strands.[8][9]

In 1986 it had been proposed for the Large Hadron Collider at CERN to use niobium-tin superconducting magnets instead of niobium-titanium, and thus avoid the requirement to cryogenically-cool the collider below the 4.22K limit with superfluid helium, but this option was not pursued in order to avoid delays while competing with the then-planned US-led Superconducting Super Collider. However extra-strong quadrupole magnets (for focussing beams) made with niobium-tin are being installed in key points of the accelerator between late 2018 and early 2020. [10]

See also[modifier | modifier le code]

References[modifier | modifier le code]

  1. a et b « Record current with powder-in-tube superconductor », laboratorytalk.com (consulté le )
  2. R. Scanlan, A.F. Greene et M. Suenaga, « Survey Of High Field Superconducting Material For Accelerator Magnets », {{Article}} : paramètre « périodique » manquant,‎ (lire en ligne)
  3. Lindenhovius J.L.H. et Hornsveld, E.M.; den Ouden, A.; Wessel, W.A.J.; ten Kate, H.H.J., « Powder-in-tube (PIT) Nb3Sn conductors for high-field magnets », Applied Superconductivity, vol. 10, no 1,‎ , p. 975–978 (DOI 10.1109/77.828394, lire en ligne, consulté le )
  4. B. T. Matthias, Geballe, T. H., Geller, S. et Corenzwit, E., « Superconductivity of Nb3Sn », Physical Review, vol. 95, no 6,‎ , p. 1435–1435 (DOI 10.1103/PhysRev.95.1435)
  5. Theodore H. Geballe, « Superconductivity: From Physics to Technology », Physics Today, vol. 46, no 10,‎ , p. 52–56 (DOI 10.1063/1.881384)
  6. A. Godeke, « A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state », Supercond. Sci. Technol., vol. 19, no 8,‎ , R68–R80 (DOI 10.1088/0953-2048/19/8/R02)
  7. « Results of the first tests on the ITER toroidal magnet conductor », Commissariat à l'Énergie Atomique, (consulté le )
  8. G. Grunblatt et P. Mocaer, Ch. Verwaerde and C. Kohler, « A success story: LHC cable production at ALSTOM-MSA », Fusion Engineering and Design (Proceedings of the 23rd Symposium of Fusion Technology), vol. 75–79,‎ , p. 1–5
  9. « Alstom and Oxford Instruments Team Up to Offer Niobium-Tin Superconducting Strand », Alstrom, (consulté le )
  10. Lucio Rossi (head of the Magnet and Superconductor group at CERN, 2001–2011), « Superconductivity and the LHC: the early days », sur CERN Courier, International Journal of High-Energy Physics, (consulté le )

External links[modifier | modifier le code]