Aller au contenu

Composition (combinatoire)

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 6 octobre 2022 à 13:09 et modifiée en dernier par 90.44.243.124 (discuter). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Bijection entre entiers en écriture binaire et compositions de 4.

En mathématiques, et notamment en combinatoire, une composition d'un entier positif n est une représentation de n comme somme d'une suite d'entiers strictement positifs. Ainsi, (1,2,1) est une composition de 4=1+2+1. Deux suites qui diffèrent par l'ordre de leurs parts sont considérées comme des compositions différentes. Ainsi, (2,1,1) est une autre composition de l'entier 4. Les compositions diffèrent donc des partitions d'entiers qui considèrent des suites sans tenir compte de l'ordre de leurs termes.

La propriété principale est que le nombre de compositions d'un entier n est 2n-1, et donc que les compositions sont en bijection avec les parties d'un ensemble à n-1 éléments.

Définition

Une composition d'un entier naturel positif est une suite d'entiers positifs tels que . Chaque est une part, et l'entier est la longueur.

Exemples

Les 32 compositions de 6. L'absence d'une barre de séparation est notée en rouge.
Les 11 partitions de 6. Une partition est une composition dont les parts sont décroissantes.

Les seize compositions de 5 sont :

  • 5
  • 4 + 1
  • 3 + 2
  • 3 + 1 + 1
  • 2 + 3
  • 2 + 2 + 1
  • 2 + 1 + 2
  • 2 + 1 + 1 + 1
  • 1 + 4
  • 1 + 3 + 1
  • 1 + 2 + 2
  • 1 + 2 + 1 + 1
  • 1 + 1 + 3
  • 1 + 1 + 2 + 1
  • 1 + 1 + 1 + 2
  • 1 + 1 + 1 + 1 + 1.

Les sept partitions de 5:

  • 5
  • 4 + 1
  • 3 + 2
  • 3 + 1 + 1
  • 2 + 2 + 1
  • 2 + 1 + 1 + 1
  • 1 + 1 + 1 + 1 + 1.

Nombre de compositions

Le nombre de composition de l’entier est .

Voici une démonstration de cette propriété. On considère une suite de points, et on choisit de placer ou de ne pas placer une barre verticale entre des points. Par exemple, pour , on peut placer trois barres comme suit :

Une part d'une composition est formé du nombre de points qui sont contigus. Dans l'exemple, la composition est (2,2,1,3). De manière générale, il y a positions où on peut choisir de placer ou de ne pas placer une barre de séparation; ceci fait choix possibles de séparations et comme les choix déterminent les compositions, cela fait compositions[1].

La démonstration montre que le nombre de compositions d'un entier formées de parts est . Donald Knuth, dans le volume 4a de son traité[2], s'intéresse à la génération de toutes les compositions, sous des contraintes variées.

Bijection avec les écritures binaires

Pour noter la représentation graphique ci-dessus, on peut convenir d'écrire un « 1 » s'il n'y a pas de barre de séparation, et un « 0 » dans le cas contraire. Ainsi, la composition (2,2,1,4) de 9 est représenté par la suite de 8 chiffres binaires 10100111 (il y a autant de 0 dans « 10100111 » qu'il y a de virgules dans « (2,2,1,4) »).

Voir aussi

Notes

Les compositions d'entiers sont un objet combinatoire simple, et se trouvent dans de nombreux livres de combinatoire de base. Louis Comtet en parle dans le premier volume de son livre[3]. Knuth[2] y consacre une section. Un ouvrage entier a été consacré aux compositions et à ses variantes[4].

Références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Composition (combinatorics) » (voir la liste des auteurs).
  1. De manière plus formelle, il y a bijection entre les compositions de et les suites avec , et celles-ci sont en bijection avec les sous-ensembles de .
  2. a et b Knuth 2011, Section7.2.1.3. Generation all combinations, p. 355-389.
  3. Comtet 1970, tome I, ex. 22, p. 132.
  4. Heubach et Mansour 2009.

Bibliographie

  • Louis Comtet, Analyse combinatoire, Tomes I et II, Paris, Presses Universitaires de France, coll. « Sup - Le Mathématicien »,
  • Silvia Heubach et Toufik Mansour, Combinatorics of Compositions and Words, Boca Raton, FL, CRC Press, coll. « Discrete Mathematics and its Applications », , 504 p. (ISBN 978-1-4200-7267-9, zbMATH 1184.68373)

Liens externes