Aller au contenu

Transformation d'Aluthge

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 12 janvier 2021 à 16:45 et modifiée en dernier par WikiCleanerBot (discuter | contributions). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

En mathématiques et plus précisément en analyse fonctionnelle, la transformation d’Aluthge est une opération définie sur l'ensemble des opérateurs bornés d'un espace de Hilbert ; c'est un outil important pour étudier certaines classes d'opérateurs linéaires.

Soit un espace de Hilbert. On note l'algèbre des opérateurs linéaires continus de dans lui-même.

Soient , son opérateur adjoint et la racine carrée de l'opérateur . Il existe une unique isométrie partielle telle que et .

Définition

[modifier | modifier le code]

Soient et sa décomposition polaire. La transformation d'Aluthge de est l'opérateur défini par :

.

Plus généralement, pour tout nombre réel , on appelle -transformation d'Aluthge de l'opérateur .

Pour deux vecteurs , on note l'opérateur défini par : . Un calcul élémentaire[1] montre que si alors .

Notes et références

[modifier | modifier le code]
  1. (en) Fadil Chabbabi et Mostafa Mbekhta, « Jordan product maps commuting with the λ-Aluthge transform », J. Math. Anal. Appl., vol. 450, no 1,‎ , p. 293-313 (DOI 10.1016/j.jmaa.2017.01.036) ; (en) Fadil Chabbabi, « Product commuting maps with the λ-Aluthge transform », sur HAL,‎ , prop. 2.1.

Lien externe

[modifier | modifier le code]

(en) « Ariyadasa Aluthge », sur le site du Mathematics Genealogy Project