Équation de Sellmeier

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Un graphique de l'indice de réfraction en fonction de la longueur d'onde en utilisant l'équation de Sellmeier pour du verre BK7.

En optique, l’équation de Sellmeier est une relation empirique entre l'indice de réfraction et la longueur d'onde pour un milieu transparent donné. Cette équation est utilisée pour déterminer la dispersion de la lumière dans un milieu réfringent.

Cette équation a été trouvée en 1871 par Wilhelm Sellmeier, et était un développement du travail de Augustin Louis Cauchy sur la loi de Cauchy pour modéliser la dispersion[1].

Équation[modifier | modifier le code]

La forme habituelle de cette équation est[2] :

,

B1,2,3 et C1,2,3 sont les coefficients de Sellmeier, propres à un matériau et déterminés expérimentalement. Ces coefficients sont généralement déterminés pour λ mesuré en microns. λ est la longueur d'onde dans le vide et non pas celle dans le milieu d'intérêt, qui est .

Une différente forme de l'équation est parfois utilisée pour certains types de matériaux, par exemple les cristaux[réf. nécessaire]. Les coefficients de Sellmeier pour les verres optiques sont indiqués généralement dans les spécifications du verre lui-même.

Origine[modifier | modifier le code]

L'équation de Sellmeier résulte d'une approximation dans laquelle on considère que les particules du milieu réagissent au champ électromagnétique incident à la manière d'oscillateurs harmoniques. Dans le cadre de cette modélisation, on aboutit à la formule : ,

où M représente le nombre de pics de résonance pour les oscillateurs harmoniques aux longueurs d'onde λj, Bj des constantes obtenues empiriquement en adaptant le modèle aux mesures[3].

Chaque terme de la somme représente une résonance d'absorption de force Bi à la longueur d'onde √Ci. Par exemple, les coefficients pour le BK7 ci-dessous correspondent à deux résonances d'absorption dans l'ultraviolet, et une dans l'infrarouge. Près de chaque pic d'absorption, l'équation donne la valeur non-physique de n=±∞, et un modèle de dispersion plus précis, tel que le modèle de dispersion d'Helmoltz, est requis pour décrire adéquatement ces régions.

Aux longues longueurs d'onde loin des pics d'absorption, la valeur de n tend vers :

où εr est la constante diélectrique relative du milieu.

L'équation de Sellmeier peut également prendre la forme :

où le coefficient A est une approximation de la contribution de l'absorption des courtes longueurs d'onde (par exemple, ultraviolet) à l'indice de réfraction dans les longueurs d'onde plus grandes.

Coefficients[modifier | modifier le code]

Table de coefficients de l'équation de Sellmeier
Matériau B1 B2 B3 C1 C2 C3
Al2O3 Alumine
(indice ordinaire)
1.43134930 6.5054713x10−1 5.3414021 5.2799261x10−3µm2 1.42382647x10−2µm2 3.25017834x102µm2
Al2O3 Alumine
(indice extraordinaire)
1.5039759 5.5069141x10−1 6.5937379 5.48041129x10−3µm2 1.47994281x10−2µm2 4.0289514x102µm2
BK7 1.03961212 2.31792344x10−1 1.01046945 6.00069867x10−3µm2 2.00179144x10−2µm2 1.03560653x102µm2

Notes et références[modifier | modifier le code]

  1. (de) Wilhelm Sellmeier, « Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen », Annalen der Physik und Chemie, no 219,‎ , p. 272-282
  2. (en) Refractive index and dispersion, Schott AG, coll. « Technical information » (no 29) (lire en ligne)
  3. (en) Alexis Mendez et T. F. Morse, Specialty optical fibers handbook, , 840 p. (lire en ligne), p. 39

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]