Élément maximal

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Dans un ensemble ordonné, un élément maximal est un élément tel qu'il n'existe aucun autre élément de cet ensemble qui lui soit supérieur, c'est-à-dire que a est dit élément maximal d'un ensemble ordonné (E, ≤) si a est un élément de E tel que :

\forall x\in E,\qquad a\le x\Rightarrow x=a.

De même, a est un élément minimal de E si :

\forall x\in E,\qquad x\le a\Rightarrow x=a.

Pour tout élément a de E, on a les équivalences et l'implication (stricte) :

a est un majorant de Ea est la borne supérieure de Ea est l'élément maximum (ou « plus grand élément ») de Ea est l'unique élément maximal de E.

Si l'ordre est total, les notions d'élément maximal et de plus grand élément sont confondues (de même pour élément minimal et plus petit élément).

Exemples[modifier | modifier le code]

  • L'ensemble des parties d'un ensemble E, muni de l'inclusion, a pour seul élément maximal E, qui est aussi le plus grand élément.
  • L'ensemble des parties propres (différentes de l'ensemble lui-même) d'un ensemble E non vide, muni de l'inclusion, a pour éléments maximaux tous les E\{a} pour aE. Il n'y a pas de plus grande partie propre dès que E a plus de deux éléments.
  • L'ensemble des entiers naturels muni de l'ordre usuel est un exemple d'ordre qui n'a pas de plus grand élément, donc (puisque cet ordre est total) pas d'élément maximal.
  • L'ensemble des suites finies de 0 et de 1, muni de l'ordre préfixe, (u0, …, un) ≤ (v0, …, vp) quand np et pour tout in, ui = vi, est un ordre partiel qui n'a pas d'éléments maximaux, et la suite vide pour plus petit élément (donc seul élément minimal).
  • Un arbre muni de la relation « est un ancêtre de » a pour éléments maximaux toutes ses feuilles (il n'en existe pas forcément, les branches pouvant être infinies).

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Lemme de Zorn