Aller au contenu

Algorithme APriori

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 14 février 2021 à 18:56 et modifiée en dernier par 37.169.45.23 (discuter). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

L'algorithme APriori[1] est un algorithme d'exploration de données conçu en 1994, par Rakesh Agrawal et Ramakrishnan Sikrant, dans le domaine de l'apprentissage des règles d'association. Il sert à reconnaitre des propriétés qui reviennent fréquemment dans un ensemble de données et d'en déduire une catégorisation.

L'algorithme Apriori s'execute en deux étapes :

  • Soient minsupp l'indice de support minimum donné, et minconf l'indice de confiance donné.
  • Génération de tous les itemsets fréquents c'est-à-dire
  • Génération de toutes les règles d'associations de confiance à partir des itemsets fréquents, c'est-à-dire

Liens internes

[modifier | modifier le code]

Références

[modifier | modifier le code]
  1. Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining Association Rules