Aller au contenu

Fichier:X-29 049 - First Flight.jpg

Le contenu de la page n’est pas pris en charge dans d’autres langues.
Une page de Wikipédia, l'encyclopédie libre.

Fichier d’origine(3 000 × 2 398 pixels, taille du fichier : 537 kio, type MIME : image/jpeg)

Ce fichier et sa description proviennent de Wikimedia Commons.

Description

Description
English: This photo, taken from a chase plane below the aircraft, shows the number two X-29 on its first flight, May 23, 1989. This aircraft investigated high angle-of-attack characteristics and the military utility of its forward swept wing/canard configuration during 120 research flights in Phase 2 of the flight research. Flying at up to 67 degrees angle of attack, the aircraft demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicated. The number one X-29, which flew during Phase 1, was limited to 21 degrees angle of attack maneuvering.

Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft.

Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave pilots excellent control response at angles of attack of up to 45 degrees. During its flight history, the X-29 aircraft flew 422 research missions and a total of 436 missions. Sixty of the research flights were part of the X-29 follow-on "vortex control" phase. The forward-swept wing of the X-29 resulted in reverse airflow, toward the fuselage rather than away from it, as occurs on the usual aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and prevented stalling (loss of lift) at high angles of attack.

Introduction of composite materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty.

The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns.

During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward-swept wing- canard design. The NASA/Air Force-designed high-gain flight control laws also contributed to the good flying qualities.

During the Air Force-initiated vortex-control phase, the X-29 successfully demonstrated vortex flow control (VFC). This VFC was more effective than expected in generating yaw forces, especially in high angles of attack where the rudder is less effective. VFC was less effective in providing control when sideslip (wind pushing on the side of the aircraft) was present, and it did little to decrease rocking oscillation of the aircraft.

The X-29 vehicle was a single-engine aircraft, 48.1 feet long with a wing span of 27.2 feet. Each aircraft was powered by a General Electric F404-GE-400 engine producing 16,000 pounds of thrust. The program was a joint effort of the Department of Defense's Defense Advanced Research Projects Agency (DARPA), the U.S. Air Force, the Ames-Dryden Flight Research Facility, the Air Force Flight Test Center, and the Grumman Corporation. The program was managed by the Air Force's Wright Laboratory, Wright Patterson Air Force Base, Ohio.
Date
Source nasaimages.org
Auteur NASA
Cette image ou vidéo a été cataloguée par le
Armstrong Flight Research Center
de la
National Aeronautics and Space Administration
(NASA) des États-Unis sous Photo ID : EC89-0127-004.

Ce bandeau n’indique rien sur le statut de l’œuvre au regard du droit d'auteur. Un bandeau de droit d’auteur est requis. Voir Commons:À propos des licences pour plus d’informations.
Autres langues :

Conditions d’utilisation

Public domain Ce fichier provient de la NASA. Sauf exception, les documents créés par la NASA ne sont pas soumis à copyright. Pour plus d'informations, voir la politique de copyright de la NASA.
Attention :

Légendes

Ajoutez en une ligne la description de ce que représente ce fichier

Éléments décrits dans ce fichier

dépeint

image/jpeg

Historique du fichier

Cliquer sur une date et heure pour voir le fichier tel qu'il était à ce moment-là.

Date et heureVignetteDimensionsUtilisateurCommentaire
actuel29 avril 2012 à 23:01Vignette pour la version du 29 avril 2012 à 23:013 000 × 2 398 (537 kio)Bomazi

La page suivante utilise ce fichier :