Aller au contenu

Polynôme d'Appell généralisé

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, une suite de polynômes possède une représentation d'Appell généralisée si la fonction génératrice des polynômes prend la forme :

où la fonction génératrice est composée des séries :

  • avec  ;
  • avec tous les  ;
  • avec .

Dans les conditions ci-dessus, il n'est pas difficile de montrer que est polynôme de degré .

Cas particuliers[modifier | modifier le code]

  • Le choix de donne la classe des polynômes de Brenke.
  • Le choix de donne la suite des polynômes de Sheffer.
  • Le choix simultané de et de donne la suite des polynômes d'Appell au sens strict.

Représentation explicite[modifier | modifier le code]

Les polynômes d'Appell généralisés ont la représentation explicite

.

Le coefficient est

où la somme s'étend à toutes les « partitions au sens large » de n en k + 1 parties, c'est-à-dire à tous les (k + 1) uplets j d'entiers positifs ou nuls de somme n.

Pour les polynômes d'Appell, cette formule devient :

.

Relations de récurrence[modifier | modifier le code]

De manière équivalente, une condition nécessaire et suffisante pour que le noyau puisse être écrit comme avec est que

et ont un développement en série

et

.

En faisant la substitution

,

il vient immédiatement la relation de récurrence :

.

Dans le cas particulier des polynômes de Brenke, on a et donc tous les sont nuls, ce qui simplifie considérablement la relation de récurrence.

Crédit d'auteurs[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Generalized Appell polynomials » (voir la liste des auteurs).

Bibliographie[modifier | modifier le code]