Aller au contenu

Variété (algèbre)

Un article de Wikipédia, l'encyclopédie libre.

En algèbre universelle, une variété est une classe équationnelle, c'est-à-dire une classe K non vide de structures algébriques de même signature qui satisfont un ensemble d'identités (appelé axiomatisation équationnelle de la classe).

Un monoïde est un ensemble E muni d'une loi interne * associative et d'un élément neutre. Ainsi, pour tous éléments x, y, z d'un monoïde, les équations suivantes sont vérifiées :

(x * y) * z = x * (y * z)
x * e = x
e * x = x

De plus, ces trois équations caractérisent la notion de monoïde. Ainsi, la classe des monoïdes est une variété, puisqu'elle est définie par ces trois équations.

Théorème HSP

[modifier | modifier le code]

D'après la définition, toute variété K vérifie :

  • (H) toute image par homomorphisme d'un élément de K est dans K ;
  • (S) toute sous-structure d'un élément de K est dans K ;
  • (P) tout produit direct d'éléments de K est aussi dans K.

Le théorème HSP de Garrett Birkhoff (1935)[1],[2] énonce que la réciproque est vraie : toute classe stable par homomorphismes, sous-structures et produits est équationnelle.

Article connexe

[modifier | modifier le code]

Théorème des variétés d'Eilenberg

Notes et références

[modifier | modifier le code]
  1. Birkhoff, G. (Oct 1935), "On the structure of abstract algebras", Proceedings of the Cambridge Philosophical Society, 31 (4): 433–454
  2. (en) J. S. Oliveira et G.-C. Rota, Selected Papers on Algebra and Topology by Garrett Birkhoff, Springer Science & Business Media, (ISBN 978-0-8176-3114-7, lire en ligne)