Aller au contenu

Turing-complet

Un article de Wikipédia, l'encyclopédie libre.

En informatique et en logique, un système formel est dit complet au sens de Turing ou Turing-complet (par calque de l’anglais Turing-complete[1]) s’il possède un pouvoir expressif au moins équivalent à celui des machines de Turing. Dans un tel système, il est donc possible de programmer n'importe quelle machine de Turing.

Cette notion est rendue pertinente par la thèse de Church, qui postule l’existence d’une notion naturelle de calculabilité. Ainsi, le pouvoir expressif des machines de Turing coïncide avec celui des fonctions récursives, du lambda calcul, ou encore des machines à compteurs.

Bien que certains modèles de calcul, appelés des hypercalculs, soient strictement plus expressifs que les machines de Turing, ces modèles sont des objets de spéculation (requérant par exemple d’effectuer une infinité d’opérations, ou de calculer sur l’ensemble des nombres réels) et l’on ignore s’ils sont physiquement réalisables.

Dans ces conditions, la thèse de Church conjecture l’universalité du modèle de calcul des machines de Turing : tout système Turing-complet serait en fait équivalent aux machines de Turing.

Langages de programmation Turing-complets

[modifier | modifier le code]

De même qu'un modèle de calcul, un langage informatique est dit Turing-complet s'il permet de représenter toutes les fonctions calculables au sens de Turing et Church (nonobstant la finitude de la mémoire des ordinateurs[note 1]).

Certains auteurs prennent cette propriété pour définition d’un langage de programmation[2],[3], mais d'autres définitions peuvent être choisies[4].

Les langages de programmation usuels (C, Java…) sont Turing-complets car ils possèdent tous les ingrédients nécessaires à la simulation d'une machine de Turing universelle (compter, comparer, lire, écrire, etc.)[5]. Le langage C++ est également Turing-complet, et le sous-ensemble permettant la programmation générique (templates) l'est aussi[réf. nécessaire].

Le langage SQL, à l'origine non complet au sens de Turing, l'est devenu avec la norme SQL:1999 lui permettant d'écrire des requêtes récursives[réf. nécessaire].

Le langage LaTeX (issus du TeX), destiné à la composition de documents, est également Turing-complet[6].

Le langage HTML seul n'est pas Turing-complet, cependant il a été prouvé que le langage CSS (en version 3) permet de construire l'automate cellulaire élémentaire de code 110 (voir Rule 110 (en)[7]), connu pour être universel au sens de Turing. Ces deux langages étant souvent indissociables, on peut conclure que le HTML+CSS est Turing-complet, et cette association en fait donc théoriquement un langage de programmation.

Un langage Turing-complet hérite des caractéristiques d'une machine de Turing. Par exemple, le problème de l'arrêt est indécidable, donc il est impossible d'écrire un programme qui dit si un programme arbitraire qu'on lui fournit se termine ou non.

Langages qui ne sont pas Turing-complets

[modifier | modifier le code]

Certains langages dédiés au traitement de problèmes spécifiques ne sont pas Turing-complets. Système F, un formalisme de lambda calcul en est un exemple. Par ailleurs — par conception —, les langages totaux (en), où tous les calculs se terminent nécessairement (comme le langage Gallina de l'assistant de preuve Coq), ne sont pas non plus Turing-complets. Cependant, ces derniers sont en pratique capables de calculer tout ce qui est intéressant[8],[9], en d'autres termes ils peuvent mettre en œuvre toutes les fonctions dont nous pourrions avoir besoin dans la vie pratique ; les calculs qui leur échappent, soit ont une complexité au-delà de l'imaginable et du réalisable, soit ne se terminent pas. La compilation doit alors démontrer la terminaison des programmes, ou nécessiter une interaction avec le programmeur pour certaines démonstrations, mais c'est le prix à payer pour une qualité de code qui est correcte par construction.

Exemples en dehors des langages de programmation

[modifier | modifier le code]

Certains jeux et logiciels sont Turing-complets par accident, sans que leurs auteurs l'aient souhaité ou envisagé :

Articles connexes

[modifier | modifier le code]

Notes et références

[modifier | modifier le code]
  1. Un ordinateur a une mémoire finie, le modèle de calcul des machines de Turing a une mémoire illimitée.

Références

[modifier | modifier le code]
  1. Bureau de la traduction, fiche de la banque de données TERMIUM Plus, sur termiumplus.gc.ca, (consulté le )
  2. (en) John C. Mitchell, Concepts in Programming Languages, Cambridge University Press, (lire en ligne), p. 14 :

    « The fact that all standard programming languages express precisely the class of partial recursive functions is often summarized by the statement that all programming languages are Turing complete. »

  3. (en) Bruce J. MacLennan, Principles of Programming Languages, Oxford University Press, , Introduction: What is a programming language? :

    « A programming language is a language that is intended for the expression of computer programs and that is capable of expressing any computer program. This is not a vague notion. There is a precise theorical way of determining whether a computer language can be used to express any program, namely, by showing that it is equivalent to a universal Turing machine. »

  4. (en) « Are non Turing-complete languages considered programming languages at all? », sur Stack Exchange
    À la question posée, une réponse sélectionnée considère que la Turing-complétude n’est pas requise pour considérer un langage comme langage de programmation.
    .
  5. Exemple de mise en œuvre d'une machine de Turing en C : (en) Juan Pablo Rinaldi (juampi), « An implementation of a Turing Machine in C », sur GitHub, (consulté le ).
  6. « LaTeX is More Powerful than you Think - Computing the Fibonacci Numbers and Turing Completeness - ShareLaTeX, Éditeur LaTeX en ligne », sur fr.sharelatex.com (consulté le ).
  7. (en) Eli & Jonas, « CSS3 proven to be "Turing-complete" », sur Accodeing to you (consulté le ).
  8. « On the importance of Turing completeness », sur Lambda the Ultimate (en).
  9. Benjamin Werner, « Sets in Types, Types in Sets », Proceedings of TACS'97,‎ .
  10. Andrew Cedotal, « Man Uses World's Most Difficult Computer Game to Create … A Working Turing Machine », sur www.themarysue.com, (version du sur Internet Archive).
  11. Paul Rendell, « A Turing Machine in Conway's Game of Life », sur rendell-attic.org, (version du sur Internet Archive).
  12. (en) Alex Churchill, « Magic: The Gathering is Turing Complete », sur Cornell University, (version du sur Internet Archive).
  13. (en) Gunivers, « Data Pack - Universal Turing Machine », sur YouTube, (consulté le ).
  14. (en) Tom Wildenhain, « On the Turing Completeness of MS Powerpoint »(Archive.orgWikiwixArchive.isGoogleQue faire ?), sur andrew.cmu.edu, (consulté le ).
  15. (en) Habbo (@Habbo), « We know that there are some talented Habbos out there but this one might just take the cake! One of our players @sirjonasxx took on the challenge of creating a functioning Turing machine in-game and they SUCCEEDED! Let’s check it out. », sur Twitter, (consulté le )
  16. « TwitLonger — When you talk too much for Twitter », sur twitlonger.com (consulté le ).

Articles connexes

[modifier | modifier le code]