Tritriacontagone

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Le 33-gone régulier convexe.

Un tritriacontagone[réf. nécessaire] ou triacontakaitrigone[réf. nécessaire] est un polygone à 33 sommets, donc 33 côtés et 495 diagonales.

La somme des angles internes d'un 33-gone non croisé vaut 5 580 degrés.

33-gones réguliers[modifier | modifier le code]

Un 33-gone régulier est un 33-gone dont les côtés ont même longueur et dont les angles internes ont même mesure. Il y en a dix : neuf étoilés (notés {33/2}, {33/4}, {33/5}, {33/7}, {33/8}, {33/10}, {33/13}, {33/14} et {33/16}) et un convexe (noté {33}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le 33-gone régulier ».

Caractéristiques du 33-gone régulier[modifier | modifier le code]

Chacun des 33 angles au centre mesure 360°/33 (soit environ 10,909°) et chaque angle interne mesure 5 580°/33 (soit environ 169,091°).

Si a est la longueur d'une arête :

  • le périmètre vaut P = 33 a ;
  • l'aire vaut A = (33a2/4) cot(π/33) ;
  • l'apothème vaut H = 2A/P = (a/2) cot(π/33) ;
  • le rayon vaut