Tonneau (formules)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Tonneau.

Pour trouver la capacité d'un tonneau, ou jaugeage, beaucoup de formules ont été proposées. Celles-ci sont en général approchées, une formule exacte nécessitant de connaître la forme précise du tonneau.

Quelques formules historiques[modifier | modifier le code]

Tonneau couché

On se donne la hauteur L du tonneau, le diamètre minimal d, dit diamètre du fond, et le diamètre maximal D, dit diamètre du bouge. La plupart des formules historiques reviennent à approximer le volume du tonneau par celui d'un cylindre de même hauteur, mais de diamètre intermédiaire entre celui du fond et celui du bouge.

  • Kepler a donné une formule approchée

Ce volume est celui de deux troncs de cône réunis par leur base de diamètre D. Il sous-estime légèrement le volume du tonneau.

Cette formule correspond précisément à un tonneau dont le profil est celui d'un arc d'ellipse.

  • Une instruction du ministère de l'Intérieur en pluviôse de l'an VII fixa la formule suivante[1] :

Ou encore :

  • Dez[2] a établi la formule :

Ou encore :

  • Les Douanes emploient la formule :

Dans laquelle représente la diagonale allant du trou de bonde au point le plus éloigné de ce trou. Elle est très rapide, car elle n'exige qu'une seule mesure.

Calcul[modifier | modifier le code]

La forme générale des tonneaux consiste en une surface de révolution engendrée par une portion de courbe et terminée par deux plans parallèles équidistants de l'équateur. Le volume se calcule de la façon suivante :

est la surface du disque de rayon

Les formes les plus usuelles sont données par les exemples qui suivent.

Parabole[modifier | modifier le code]

On choisit l'axe du tonneau comme axe de la parabole. L'équation de la parabole est de la forme , avec et . Le polynôme s'intègre facilement, et on obtient :

Ellipse[modifier | modifier le code]

Elle a pour équation , où et . D'où la formule qui s'intègre facilement elle aussi, et on obtient :

On retrouve la formule d'Oughtred.

Cercle[modifier | modifier le code]

C'est la courbe qui vient immédiatement à l'esprit, car elle est facile à tracer au compas. L'équation s'exprime par : (cercle de centre H, de rayon R et passant par A et B), avec et . D'où et finalement :

Noter que si l'on réalise un développement limité à l'ordre 2 de cette formule suivant , on retrouve la formule de la parabole donnée plus haut.

Cosinus[modifier | modifier le code]

On prend avec et , ce qui donne et :

Comparaison des formules[modifier | modifier le code]

Application numérique d'un cas réel. Les cotes sont en décimètres pour des résultats directs en litres.

d = 6,06 dm (petit diamètre)
D = 7,01 dm (diamètre du bouge)
L = 8,05 dm (longueur)
c = 7,68 dm (cas de la formule des Douanes)
b = -13,79 dm (cas du cercle), pour mémoire, car b dépend de d, D et L
R = 17,29 dm (cas du cercle), pour mémoire, car R dépend de d, D et L
Formule Volume
(litres)
Kepler (troncs de cônes) 270,48
Oughtred (ellipse) 284,52
Dez 279,91
Douanes 283,12
Pluviôse an VII 283,25
Parabole 283,76
Cercle 283,90
Cosinus 283,51

Volume d'un tonneau de section elliptique[modifier | modifier le code]

Soient A et B les diamètres de la section elliptique du bouge, et soient a et b les diamètres des fonds.

Si on a des paraboles comme génératrices, on a les formules :

Dans le plan xOy :

Dans le plan xOz :


Volume partiel en fonction de la hauteur de liquide[modifier | modifier le code]

La génératrice est la parabole d'équation :

  • Pour un tonneau couché

Soit la hauteur de liquide

Soit et les bornes maximales selon les valeurs de

et

représente le segment circulaire, de rayon , de flèche .

Si , alors

Si , alors

Si , alors

  • Pour un tonneau debout

Surfaces[modifier | modifier le code]

On considère ici aussi la parabole comme génératrice. Soit cette surface

est la différentielle de l'abscisse curviligne.

L'intégration se fait par le changement de variable :

On arrive à :

Puis on ajoute les deux fonds :

Surfaces partielles[modifier | modifier le code]

Surface du tonneau en contact avec le liquide[modifier | modifier le code]

  • Tonneau couché

Si , alors

Si , alors

Si , alors

  • Tonneau debout

et en tenant compte d'un fond :

Si alors . Et si le tonneau est plein. Voir supra.

Surface de liquide en contact avec l'air[modifier | modifier le code]

  • Tonneau couché

La génératrice est la parabole.

La corde au point d'abscisse s'exprime par :

Si ,

Si , alors

Si , alors

  • Tonneau debout

La génératrice est la parabole

Si le tonneau est vide, et si le tonneau est plein.

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Liens internes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. Manuel pratique et élémentaire des poids et mesures, et du calcul décimal, p. 409 sur Google Livres, par Sébastien-André Tarbé des Sablons, Paris, 1809. La deuxième formule est donnée par le Grand dictionnaire universel du XIXe siècle de Pierre Larousse.
  2. Mémoire sur la théorie du jaugeage, p. 383 sur Google Livres par M. Dez, professeur royal de mathématiques à l'École royale militaire, in Mémoires de mathématique et de physique, Paris 1773