Théorie des valeurs extrêmes

Un article de Wikipédia, l'encyclopédie libre.

La théorie des valeurs extrêmes est une branche des statistiques qui s'intéresse aux valeurs extrêmes des distributions de probabilité. Elle a été développée par Émil Julius Gumbel.

Méthodes[modifier | modifier le code]

La théorie des valeurs extrêmes permet de connaître le comportement asymptotique des maxima de valeurs prises par les valeurs de variables aléatoires identiquement distribuées et indépendantes[1]. Cette loi comporte des paramètres que l'on peut estimer soit en se basant sur les valeurs extrêmes prises dans des blocs de taille fixe des données à disposition (méthode des maxima), soit en s'intéressant à la distribution des données supérieures à un certain seuil (méthode des excès)[1]. Pour pouvoir être appliquée, la théorie des valeurs extrêmes doit donc disposer de beaucoup de données[1].

Applications[modifier | modifier le code]

La théorie des valeurs extrêmes est appliquée en hydrologie pour prévoir les crues, en océanographie dans l'étude des vagues scélérates[2], en épidémiologie pour identifier rapidement les maladies émergentes[1], en démographie pour prévoir la distribution de probabilité de l'âge maximum que l'être humain pourra atteindre, en assurance pour prévoir les grands sinistres, en finance ou encore en météorologie[3].

Notes et références[modifier | modifier le code]

  1. a b c et d Jacques Barnouin, Ivan Sache et al. (préf. Marion Guillou), Les maladies émergentes : Épidémiologie chez le végétal, l'animal et l'homme, Versailles, Quæ, coll. « Synthèses », , 444 p. (ISBN 978-2-7592-0510-3, ISSN 1777-4624, lire en ligne), III. Détection statistique et modélisation de la dynamique des émergences, chap. 12 (« Modélisation statistique des événements rares : le cas des valeurs extrêmes et de l'étude des émergences »), p. 112-117, accès libre.
  2. Michel Olagnon (ill. Janette Kerr (en)), Anatomie curieuse des vagues scélérates, Quæ, coll. « Carnets de sciences », , 176 p. (ISBN 978-2-7592-2967-3, présentation en ligne), VII. Statistiques scélérates, « Extrapoler hardiment mais scientifiquement », p. 103-104.
  3. Raggad 2009.

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • (en) Ronald Aylmar Fisher et L.H.C. Tippett, « Limiting forms of the frequency distribution of the largest and smallest member of a sample », Proc. Cambridge Phil. Soc., vol. 24,‎ , p. 180–190 (DOI 10.1017/s0305004100015681)
  • B.V. Gnedenko, « Sur la distribution limite du terme maximum d'une serie aleatoire », Annals of Mathematics, vol. 44,‎ , p. 423–453 (DOI 10.2307/1968974)
  • E.J. Gumbel, « Les valeurs extrêmes des distributions statistiques », Ann. Inst. Henri Poincaré, vol. 5, no 2,‎ , p. 115–158 (lire en ligne [PDF], consulté le )
  • Emil J. Gumbel, Statistics of Extremes, Mineola, NY, Dover, (1re éd. 1958) (ISBN 0-486-43604-7)
  • Bechir Raggad, « Fondements de la théorie des valeurs extrêmes, ses principales applications et son apport à la gestion des risques du marché pétrolier », Mathématiques et sciences humaines, no 186,‎ (lire en ligne, consulté le )

Articles connexes[modifier | modifier le code]