Théorème de König-Huygens

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 19 octobre 2019 à 13:33 et modifiée en dernier par 193.239.192.246 (discuter). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

En statistiques et en théorie des probabilités, le théorème de König-Huygens est une identité remarquable reliant la variance et la moyenne.

Énoncé en probabilités

Le théorème de König-Huygens énonce de la façon suivante :

Théorème — Pour toute variable aléatoire réelle X qui admet un moment d'ordre 2, on a :

.

Énoncé en statistiques

Ce théorème peut également s'appliquer pour une décomposition de la formule de la variance empirique.

Théorème — On a :

Généralisation

Cette formulation est en fait un cas particulier d'une identité plus générale.

Identité — On a :

Remarque :

En passant le deuxième terme de droite à gauche et en prenant a = 0 on retrouve la formule de la variance montrée plus haut :

Et donc si a = 0,

Relation avec la fonction de Leibniz

Ce théorème est un cas particulier de simplification de la fonction scalaire de Leibniz concernant des barycentres.

En effet, la moyenne m est le barycentre du système pondéré . La simplification de la fonction scalaire de Leibniz donne pour le système de barycentre G :

En remplaçant G par m, A par m', ai par ni et Ai par xi, on obtient

Ce qui est, à un facteur n près et à l'ordre près, la formule précédente.

Énoncé en mécanique (Théorème d'Huygens)

Soit un système de k points matériels Ai, de masses respectives mi, de masse totale M , de centre de masse G et un point A distant de d du point G. Le théorème de transport ou théorème de Huygens ou théorème de Steiner donne JA le moment d'inertie du système par rapport à A en fonction de JG le moment d'inertie du système par rapport à  :

avec

Référence

(en) Alexander M. Mood, Franklin A. Graybill et Duane C. Boes, Introduction to the Theory of Statistics, New Delhi, Tata McGraw-Hill, (ISBN 978-0-07-042864-5, LCCN 73000292), p. 564