Théorème de Borel-Lebesgue

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Borel, Théorème de Borel et Théorèmes de Lebesgue.

En topologie de n, le théorème de Borel-Lebesgue ou de Heine-Borel établit l'équivalence entre les deux propriétés suivantes[1] d'un ensemble A de vecteurs :

  • A est fermé et borné (A est borné s'il existe une constante positive majorant la norme de tous les éléments de A) ;
  • A est compact, c'est-à-dire[2] qu'il vérifie la propriété de Borel-Lebesgue : de tout recouvrement de A par des ouverts de ℝn on peut extraire un sous-recouvrement fini.

L'essentiel du théorème est :

tout fermé borné de ℝn est compact

car la réciproque est immédiate[3].

Ce théorème se généralise à tout ℝ-espace vectoriel normé de dimension finie mais n'est pas valable en dimension infinie.

Contre-exemple en dimension infinie[modifier | modifier le code]

Article détaillé : Théorème de compacité de Riesz.

Considérons l'espace vectoriel ℝ[X] des polynômes à coefficients réels. On prend pour norme d'un polynôme le maximum des valeurs absolues respectives de ses coefficients. Soit B la boule unité fermée. Elle est clairement fermée et bornée. Cependant, les éléments Xn de B sont à distance 1 les uns des autres donc forment une suite sans sous-suite convergente donc ici sans valeur d'adhérence, ce qui empêche B d'être compacte.

Démonstration[modifier | modifier le code]

  • Le segment [a, b] est compact
    Soit, pour chaque point x de [a, b], un ouvert Ux de contenant x. Il s'agit de trouver un ensemble fini X de points de [a, b] tel que les Ux pour xX suffisent à recouvrir le segment. On peut supposer au préalable (quitte à les rétrécir) que tous les Ux appartiennent à l'ensemble dénombrable des intervalles ouverts d'extrémités rationnelles. Il reste à montrer que tout recouvrement ouvert dénombrable (On)n∈ℕ de [a, b] possède un sous-recouvrement fini, ou encore, en posant Fn = [a, b]\∪k<nOk, que si l'intersection F d'une suite décroissante de fermés Fn de [a, b] est vide alors les Fn sont vides à partir d'un certain rang. Par contraposée, on peut le déduire du théorème de la limite monotone : si chaque Fn est non vide, en notant xn son plus grand élément, la suite bornée (xn) est décroissante donc convergente, et sa limite appartient à F.
  • Un produit fini de segments est compact[4].
    Ce résultat se déduit du lemme du tube, d'après lequel tout produit fini de compacts est compact[5].
  • Tout fermé borné den est compact.
    En effet, c'est un fermé d'un produit de segments donc d'un compact, or tout fermé d'un compact est compact.

Notes[modifier | modifier le code]

  1. À la suite de ce théorème, beaucoup d'auteurs préfèrent définir les compacts de ℝn comme les ensembles fermés et bornés de vecteurs. Dans ce cas le théorème se lit : un sous-ensemble de ℝn est compact si et seulement s'il a la propriété de Borel-Lebesgue. Une autre approche est de définir les compacts, dans ℝn, comme les parties séquentiellement compactes : le fait que ces parties sont exactement les fermés bornés est élémentaire.
  2. Plus précisément : A est dit quasi-compact s'il vérifie la propriété de Borel-Lebesgue, et compact s'il est de plus séparé, mais dans ℝn qui est séparé, ces deux notions sont équivalentes.
  3. Dans un espace séparé, tout compact est fermé et dans un espace métrique, il est de plus borné car précompact.
  4. Une démonstration de cette propriété et de ses conséquences pour la topologie de ℝn dans S. Lang, Analyse réelle, Paris, InterÉditions, 1977 (ISBN 978-2-72960059-4), p. 33.
  5. Le théorème de Tychonov, bien plus difficile, montre qu'un produit quelconque de compacts est compact.

Articles connexes[modifier | modifier le code]