Szolem Mandelbrojt

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Szolem Mandelbrojt
Szolem Mandelbrojt.jpeg

Szolem Mandelbrojt

Biographie
Naissance
Décès
Voir et modifier les données sur Wikidata (à 84 ans)
ParisVoir et modifier les données sur Wikidata
Nationalités
Formation
Activités
Parentèle
Autres informations
A travaillé pour
Membre de
Directeur de thèse
Distinctions

Szolem Mandelbrojt, né à Varsovie le et mort à Paris le , est un mathématicien français d'origine polonaise. Il est membre fondateur du groupe Bourbaki.

Il est titulaire de la Chaire de mécanique analytique et mécanique céleste au Collège de France de 1938 à 1972[1]. Il est élu membre de l'Académie des sciences en 1972.

Szolem Mandelbrojt est l'oncle de Benoît Mandelbrot. Son épouse est décédée en 1971.

Biographie[modifier | modifier le code]

Szolem Mandelbrojt est le dernier né d’une famille juive polonaise, originaire de Lituanie des deux côtés. Ses frères et sœurs, notamment Calel, de quinze ans son aîné, jouent un rôle important dans son éducation. Sa sœur Fanny ainsi que Calel, accompagné de sa femme Bertha et de ses deux fils Léon et Benoît, futur inventeur de la géométrie fractale, le rejoindront en France peu avant la guerre.

À Varsovie, il s’initie aux mathématiques par la lecture de René Baire, Émile Borel, Georg Cantor et surtout Jacques Hadamard, puis il passe l’année scolaire 1919 à Kharkov où il est l’auditeur unique des cours de Sergeï Bernstein.

Arrivé en France en 1920, il partage un deux pièces avec Georges Politzer, fréquente les philosophes Jean Wahl, Norbert Guterman, les poètes Pierre Morhange, Max Jacob, mais avant tout il suit les cours de Picard, de Lebesgue, et surtout les séminaires et leçons au Collège de France de Jacques Hadamard. Il se lance alors seul dans la théorie du prolongement analytique des séries de Taylor et soutient, encouragé par Paul Montel, sa thèse en 1923.

En 1924, il obtient une bourse de la Fondation Rockefeller et part aux États-Unis pour deux ans.

Il est naturalisé Français en 1926.

En 1926-27, il passe un an comme Professeur assistant à l'Institut Rice (devenu depuis l'université Rice) à Houston (Texas).

En 1928, il revient en France et devient Maître de conférences à l'Université de Lille. L'année suivante, il est nommé Professeur à l'Université de Clermont-Ferrand.

Membre fondateur du groupe Bourbaki en 1934, il s’en écarte pendant la guerre pour continuer à se consacrer à l’analyse mathématique[2].

En 1938, il succède à Jacques Hadamard au Collège de France et devient titulaire de la Chaire de mécanique analytique et mécanique céleste.

Mobilisé en septembre 1939, il décline le classement en « affectation spéciale », qui lui est proposé en tant que professeur au Collège de France, et sert dans une unité combattante.

Immédiatement après l’armistice du 22 juin 1940, il est invité à enseigner à nouveau à l'Institut Rice aux États-Unis. Il obtient de Vichy un visa de sortie grâce à son service dans une unité combattante, et il se rend à Houston avec sa femme Gladys et leur fils Jacques.

Après avoir offert ses services dès 1942 aux Forces françaises libres, il est révoqué du Collège de France en 1942. En 1944-45, il est membre de la mission scientifique française auprès des Forces françaises libres à Londres, mission créée par Louis Rapkine.

Réintégré à la Libération, il reprend son enseignement au Collège de France en 1945, où il restera jusqu'à la retraite en 1972.

En 1972, il devient membre de l'Académie des sciences.

Officier de la Légion d'honneur, il a obtenu de nombreux prix et distinctions.

Recherche[modifier | modifier le code]

Bien qu'il ait été un des membres fondateurs du groupe Bourbaki, et qu'il ait participé à de nombreuses réunions du groupe jusqu'à la guerre, ses principaux centres d'intérêt en recherche mathématique étaient en fait assez éloignés de l'algèbre abstraite. Il a étudié principalement l'analyse complexe et l'analyse harmonique, et notamment les séries de Dirichlet, les séries lacunaires et les fonctions entières.

Plus qu'un Bourbakiste, Mandelbrojt était plutôt un disciple de Godfrey Harold Hardy. Avec Norbert Wiener et Torsten Carleman, ils ont contribué à moderniser l'analyse de Fourier classique.

Il a formé de nombreux mathématiciens, notamment à Clermont-Ferrand le Polonais Gorny, puis à Paris les Français Jean-Pierre Kahane et Paul Malliavin, les Israéliens Schmuel Agmon (de) et Yitzhak Katznelson (en), et l’Indien U. N. Singh.

Idées[modifier | modifier le code]

Mandelbrojt a exposé ses idées générales et ses sentiments sur les mathématiques et la création mathématique dans une conférence au Collège philosophique[3]. On pourra également consulter sur ce sujet une interview de Benoît Mandelbrot[2].

Anecdote[modifier | modifier le code]

En 1947, Szolem Mandelbrojt organisa un congrès d'analyse harmonique à Nancy et invita Norbert Wiener à cette occasion. C'est à la suite de ce congrès qu'est apparu le néologisme « cybernétique ».

Publications[modifier | modifier le code]

L'œuvre mathématique de Szolem Mandelbrojt comprend environ 200 articles et plusieurs livres[4], dont les principaux sont listés ci-dessous.

Livres[modifier | modifier le code]

  • Szolem Mandelbrojt et Jacques Hadamard, La série de Taylor et son prolongement analytique, .
  • Szolem Mandelbrojt, Modern researches on the singularities of functions defined by Taylor's series, .
  • Szolem Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions; leçons professées à l'Institut Henri Poincaré et à la Faculté des sciences de Clermont-Ferrand, .
  • Szolem Mandelbrojt, Séries lacunaires, .
  • Szolem Mandelbrojt, Séries adhérentes. Régularisation des suites. Applications. Leçons professées au Collège de France et au Rice Institute, .
  • Szolem Mandelbrojt, Fonctions entières et transformées de Fourier. Applications., .
  • Szolem Mandelbrojt, Séries de Dirichlet; principes et méthodes, .
  • Szolem Mandelbrojt, Gauthier-Villars, coll. « Selecta », .

Articles[modifier | modifier le code]

  • Szolem Mandelbrojt et Floyd Edward Ulrich, On a generalization of the problem of quasi-analyticity, vol. 52, , p. 265–282.
  • Szolem Mandelbrojt, Quasi-analyticity and analytic continuation—a general principle, vol. 55, , p. 96–131.
  • Szolem Mandelbrojt et Gerald R. MacLane, On functions holomorphic in a strip region, and an extension of Watson's problem, vol. 61, , p. 454–467.
  • Szolem Mandelbrojt, Analytic continuation and infinitely differentiable functions, vol. 54, , p. 239–248.
  • Szolem Mandelbrojt et K. Chandrasekharan, On solutions of Riemann's functional equation, vol. 65, , p. 358–362.
  • Szolem Mandelbrojt, Les taubériens généraux de Norbert Wiener, vol. 72, Part 2, , p. 48–51.

Notes[modifier | modifier le code]

Références[modifier | modifier le code]

  • Szolem Mandelbrojt, SELECTA, Gauthier-Villars, .
  • Szolem Mandelbrojt, Pourquoi je fais des mathématiques, vol. 57, no  4, , p. 422-429.
  • Benoît Mandelbrot, Souvenirs à bâtons rompus de Szolem Mandelbrojt, recueillis en 1970 et préparés par Benoît Mandelbrot, vol. 6, (lire en ligne), p. 1-40.

Liens externes[modifier | modifier le code]