Sous-groupe sous-normal

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, dans le domaine de la théorie des groupes, un sous-groupe H d'un groupe G est un sous-groupe sous-normal de G s'il existe une chaîne finie de sous-groupes du groupe, commençant en H et finissant en G, et dont chaque élément est un sous-groupe normal du suivant.

Définition formelle[modifier | modifier le code]

Formellement, est -sous-normal dans s'il existe des sous-groupes

de tels que est normal dans pour chaque .

Un sous-groupe sous-normal est un sous-groupe qui est -sous-normal pour un entier positif .

Historique[modifier | modifier le code]

Le concept de sous-groupe sous-normal a été introduit sous le nom 'nachinvariante Untergruppe par Helmut Wielandt dans sa thèse d'habilitation en 1939[1]. Wielandt a notamment prouvé que dans un groupe fini, le sous-groupe engendré par deux sous-groupes sous-normaux est lui-même sous-normal, donc que les sous-groupes sous-normaux forment un treillis.

Exemple[modifier | modifier le code]

Le sous-groupe du groupe symétrique est un sous-groupe normal du groupe de Klein qui lui-même est un sous-groupe normal de . Ainsi, est un sous-groupe sous-normal de, sans être un sous-groupe normal puisque n'est pas dans .

Propriétés[modifier | modifier le code]

Quelques exemples et résultats sur les sous-groupes sous-normaux :

  • Un sous-groupe 1-sous-normal est un sous-groupe normal propre, et réciproquement.
  • Un groupe de type fini est un nilpotent si et seulement si tous ses sous-groupes sont sous-normaux.
  • Un sous-groupe quasi-normal (en) et plus généralement un sous-groupe qui commute avec tous ses sous-groupes conjugués d'un groupe fini est sous-normal.
  • Un sous-groupe pronormal (en) qui est aussi sous-normal est un sous-groupe normal. En particulier, un sous-groupe de Sylow est sous-normal si et seulement s'il est normal.
  • Un sous-groupe 2-sous-normal est un sous-groupe qui commute avec tous ses sous-groupes conjugués.

La relation de sous-normalité est transitive : en d'autres termes, un sous-groupe sous-normal d'un sous-groupe sous-normal est sous-normal. La relation de sous-normalité peut donc être définie comme la fermeture transitive de la relation de normalité.

Articles liés[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. « Eine Verallgemeinerung der invarianten Untergruppen », Mathematische Zeitschrift, vol. 45,‎ 1939), p. 209-244 (lire en ligne).

Bibliographie[modifier | modifier le code]