Produit de Kronecker

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

En mathématiques, le produit de Kronecker est une opération portant sur les matrices. Il s'agit d'un cas particulier du produit tensoriel. Il est ainsi dénommé en hommage au mathématicien allemand Leopold Kronecker.

Définition formelle[modifier | modifier le code]

Soient A une matrice de taille m x n et B une matrice de taille p x q. Leur produit tensoriel est la matrice AB de taille mp par nq, définie par blocs successifs de taille p x q, le bloc d'indice i,j valant ai,j B

En d'autres termes

Ou encore, en détaillant les coefficients,

Exemple[modifier | modifier le code]

Comme le montre l'exemple ci-dessous, le produit de Kronecker de deux matrices consiste à recopier plusieurs fois la deuxième matrice, en la multipliant par le coefficient correspondant à un terme de la première matrice.

Propriétés[modifier | modifier le code]

Bilinéarité, associativité[modifier | modifier le code]

Le produit de Kronecker est bilinéaire et associatif : sous réserve de compatibilité des tailles pour A, B et C, on a les équations suivantes :

Le produit de Kronecker n'est pas commutatif ; cependant pour toutes A et B il existe deux matrices de permutation P et Q telles que AB = P (BA) Q Si de plus A et B ont la même taille, alors AB et BA sont équivalentes par permutation sur les vecteurs de la base :

P est une matrice de permutation.

Propriétés sur le produit usuel[modifier | modifier le code]

La propriété suivante mélange les aspects liés au produit matriciel usuel et au produit de Kronecker lorsque les tailles des matrices sont telles qu'il est possible de former les produits AC et BD :

On peut en déduire que AB est inversible si et seulement si A et B sont inversibles, auquel cas :

Spectre[modifier | modifier le code]

En utilisant la propriété précédente on déduit que si X et Y sont des vecteurs propres de A et B : et , alors :

Donc si et sont les valeurs propres de A et B, alors sont les valeurs propres de AB, en comptant la multiplicité.

En particulier :

Tr désigne la trace, det le déterminant et rg le rang de la matrice.

Transposition[modifier | modifier le code]

On a la propriété suivante sur la transposée :

Lien externe[modifier | modifier le code]

(en) Eric W. Weisstein, « Kronecker Product », sur MathWorld