Processus d'Ornstein-Uhlenbeck

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, le processus d'Ornstein-Uhlenbeck, nommé d'après Leonard Ornstein (en) et George Uhlenbeck et aussi connu sous le nom de mean-reverting process, est un processus stochastique décrit par l'équation différentielle stochastique

dr_t = -\theta (r_t-\mu)\,dt + \sigma\, dW_t,\,

où θ, μ et σ sont des paramètres déterministes et Wt est le processus de Wiener.

Trois exemples du processus d'Ornstein-Uhlenbeck avec θ=1, μ=1.2, σ=0.3:
Bleu : Valeur initiale a=0 (p. s.)
Vert : Valeur initiale a=2 (p. s.)
Rouge : Valeur initiale distribuée normalement ainsi le procédé a une mesure invariante

Solution[modifier | modifier le code]

Cette équation est résolue par la méthode de variation des constantes. Appliquons le lemme d'Itō à la fonction f(r_t, t) = r_t e^{\theta t} pour obtenir

 df(r_t,t) =  \theta r_t e^{\theta t}\, dt + e^{\theta t}\, dr_t\, = e^{\theta t}\theta \mu \, dt + \sigma e^{\theta t}\, dW_t. \,

En intégrant de 0 à t, on obtient

 r_t e^{\theta t} = r_0 + \int_0^t e^{\theta s}\theta \mu \, ds + \int_0^t \sigma e^{\theta s}\, dW_s \,

d'où nous voyons

 r_t  = r_0 e^{-\theta t} + \mu(1-e^{-\theta t}) + \int_0^t \sigma e^{\theta (s-t)}\, dW_s. \,

Ainsi, le premier moment est donné (en supposant que r_0 est une constante) par :

E(r_t)= r_0 e^{-\theta t} + \mu(1-e^{-\theta t}).

s \wedge t = \min(s,t) On peut utiliser l'isométrie d'Itō (en) pour calculer la covariance

\operatorname{cov}(r_s,r_t)= E[(r_s - E[r_s])(r_t - E[r_t])]
= E[\int_0^s \sigma  e^{\theta (u-s)}\, dW_u \int_0^t \sigma  e^{\theta (v-t)}\, dW_v ]
= \sigma^2 e^{-\theta (s+t)}E[\int_0^s  e^{\theta u}\, dW_u \int_0^t  e^{\theta v}\, dW_v ]
= \frac{\sigma^2}{2\theta} \, e^{-\theta (s+t)}(e^{2\theta (s \wedge t)}-1).\,

Il est aussi possible (et souvent commode) de représenter r_t (sans condition) en tant que mesure transformée du temps du processus Wiener :

 r_t=\mu+{\sigma\over\sqrt{2\theta}}W(e^{2\theta t})e^{-\theta t}

ou avec condition (r_0 donné) comme

 r_t=r_0 e^{-\theta t} +\mu (1-e^{-\theta t})+
{\sigma\over\sqrt{2\theta}}W(e^{2\theta t}-1)e^{-\theta t}.

Le processus d'Ornstein-Uhlenbeck (un exemple de processus gaussien à variance bornée) admet une distribution de probabilité stationnaire, contrairement au processus de Wiener.

L'intégrale temps de ce processus peut être utilisée pour générer un bruit avec un spectre de puissance 1/f.

Application[modifier | modifier le code]

Le modèle de Vasicek (en) des taux d'intérêt est un exemple de processus d'Ornstein-Uhlenbeck.