Processus d'Ornstein-Uhlenbeck

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, le processus d'Ornstein-Uhlenbeck, nommé d'après Leonard Ornstein (en) et George Uhlenbeck et aussi connu sous le nom de mean-reverting process, est un processus stochastique décrit par l'équation différentielle stochastique

où θ, μ et σ sont des paramètres déterministes et Wt est le processus de Wiener.

Trois exemples du processus d'Ornstein-Uhlenbeck avec θ=1, μ=1.2, σ=0.3:
Bleu : Valeur initiale a=0 (p. s.)
Vert : Valeur initiale a=2 (p. s.)
Rouge : Valeur initiale distribuée normalement ainsi le procédé a une mesure invariante

Solution[modifier | modifier le code]

Cette équation est résolue par la méthode de variation des constantes. Appliquons le lemme d'Itō à la fonction pour obtenir

En intégrant de 0 à t, on obtient

d'où nous voyons

Ainsi, le premier moment est donné (en supposant que est une constante) par :

On peut utiliser l'isométrie d'Itō (en) pour calculer la covariance

Il est aussi possible (et souvent commode) de représenter (sans condition) en tant que mesure transformée du temps du processus Wiener :

ou avec condition ( donné) comme

Le processus d'Ornstein-Uhlenbeck (un exemple de processus gaussien à variance bornée) admet une distribution de probabilité stationnaire, contrairement au processus de Wiener.

L'intégrale temps de ce processus peut être utilisée pour générer un bruit avec un spectre de puissance 1/f.

Application[modifier | modifier le code]

Le modèle de Vasicek (en) des taux d'intérêt est un exemple de processus d'Ornstein-Uhlenbeck où les coefficients sont positifs et constants.

Le Processus CIR, le modèle de Cox, Ingersoll et Ross (1985) est une extension du modèle de Vasicek et du processus d'Ornstein-Uhlenbeck qui introduit la racine carré du taux d'intérêt instantané dans le coefficient du terme stochastique.

Références[modifier | modifier le code]