Pouvoir d'arrêt (rayonnement ionisant)

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Page d'aide sur l'homonymie Pour les articles homonymes, voir Pouvoir d'arrêt.
Pouvoir d'arrêt de l'aluminium pour les protons, en fonction de l'énergie des protons.

En traversant la matière, les particules chargées énergétiques ionisent les atomes ou molécules sur leur parcours. Par conséquent, les particules perdent peu à peu leur énergie. Le pouvoir d'arrêt est la perte moyenne d'énergie de la particule par distance parcourue, mesurée par exemple en MeV/cm (voir la figure ci-contre).

Pouvoir d'arrêt et parcours[modifier | modifier le code]

Le pouvoir d'arrêt dépend du type de particule, de son énergie et des propriétés de la matière traversée. Car la production d'une paire d'ions (typiquement un ion positif et un électron) requiert une quantité fixe d'énergie (par exemple, à peu près 33 eV pour l'air), la densité d'ionisation est proportionnelle au pouvoir d'arrêt du matériau.

Les électrons, les ions atomiques, les mésons etc. perdent tous de l'énergie en traversant la matière. Ici, nous considérons surtout des ions atomiques.

Le pouvoir d'arrêt mesure une propriété du matériau, tandis que la perte d'énergie par cm considère la situation du point de vue de la particule. Mais la valeur et les unités sont les mêmes et cette valeur est normalement positive, à cause du signe moins devant la définition suivante:

La courbe Bragg pour les particules alpha de 5,49 MeV dans l'air

est l'énergie, et est la distance parcourue. Le pouvoir d'arrêt, et par conséquent la densité d'ionisation, croissent normalement avec la décélération: c'est la courbe Bragg, nommée d'après William Henry Bragg. Un peu devant la fin du parcours, la perte d'énergie passe par un maximum, le pic de Bragg. Ce pic est primordial en radiothérapie.

Dans la figure ci-contre, on voit que le pouvoir d'arrêt des particules α de 5,49 MeV dans l'air monte avant d'atteindre un maximum (cette énergie correspond à la désintégration α du gaz radon 222Rn qui est présent dans l'atmosphère des lieux composé de granite).

L'équation au-dessus définit le pouvoir d'arrêt linéaire qui peut être exprimé en unités comme MeV/mm, par exemple. Très souvent, S(E) est divisé par le densité du matériau; de cette manière-là, on arrive au pouvoir d'arrêt de masse qui peut être exprimé en unités comme MeV/(mg/cm2), par exemple. Le pouvoir d'arrêt de masse ne dépend pas de la densité, approximativement.

On peut calculer le parcours moyen en intégrant la réciproque du pouvoir d'arrêt S(E) sur la quantité d'énergie.

Absorption de divers faisceaux par l'eau : en bleu et orange, des courbes de Bragg pour les protons à 250 MeV, en rose l'absorption de rayons gamma passant par la Crête de Tavernier.

La figure à gauche montre l'absorption par l'eau d'un faisceau de protons accélérés à 250 MeV (courbe orange); cette courbe a un pic très aigu. Pour irradier une tumeur plus épaisse en radiothérapie, on peut élargir cette pointe en modifiant l'énergie de l'accélérateur ou en utilisant de matériau absorbant(courbe bleue).

Cette figure montre également l'absorption d'un faisceau de photons de haute énergie (courbe rose). Cette courbe est tout à fait différente. Elle a essentiellement une décroissance exponentielle après un passage par un maximum appelé Crête de Tavernier du nom du physicien belge Guy Tavernier qui découvrit le phénomène en 1948. Cette allure de courbe est d'ailleurs aussi semblable pour les faisceaux de neutrons et les rayons X et Gamma. Le photon ne perd pas son énergie progressivement par des ionisations successives, mais il perd souvent toute son énergie en une seule ionisation. L'absorption de photons n'est pas décrite par le pouvoir d'arrêt, mais par un coefficient d'absorption.

Pouvoir d'arrêt électronique, nucléaire et radiatif[modifier | modifier le code]

Le pouvoir d'arrêt électronique provient du ralentissement par les collisions inélastiques entre les électrons du matériau et l'ion passant. Ces collisions engendrent des excitations et ionisations des électrons du matériau, ainsi que des électrons de l'ion.

Au-dessus d'une énergie de quelque cent keV par nucléon, on peut calculer le pouvoir d'arrêt électronique avec une précision de quelque pour cent, en utilisant par exemple la formule de Bethe. Pour les énergies plus basses, le calcul devient plus difficile[1].

Pouvoir d'arrêt de l'aluminium pour les ions aluminium, en fonction de l'énergie des ions. Typiquement, le maximum du pouvoir d'arrêt nucléaire se situe autour de 1 keV par nucléon, et le maximum du pouvoir d'arrêt électronique au-dessus de 100 keV par nucléon

On trouve en ligne les valeurs expérimentales du pouvoir d'arrêt électronique pour beaucoup d'ions et de matériaux[2]. La précision de ces tables de pouvoir d'arrêt électronique a été analysée par exemple par H. Paul[3].

Le pouvoir d'arrêt nucléaire est produit par les collisions élastiques entre l'ion et les atomes du matériau (cependant, l'expression nucléaire n'a rien à voir avec les forces nucléaires, c'est-à-dire l'interaction forte[4]). Si l'on connaît la forme du potentiel répulsif entre l'ion et l'atome, on peut calculer le pouvoir d'arrêt nucléaire . Dans la figure en tête d'article pour les protons dans l'aluminium, la contribution nucléaire est négligeable partout, sauf pour les plus basses énergies. Mais si la masse de l'ion devient plus grande, la contribution nucléaire croît aussi. Dans l'image ci-contre, pour des ions aluminium, le pouvoir d'arrêt nucléaire à basse énergie est déjà plus grand que le pouvoir d'arrêt électronique.

Par conséquent, pour les énergies pas trop hautes, le pouvoir d'arrêt est la somme de deux contributions: . Aux énergies encore plus hautes, on doit considérer aussi le pouvoir d'arrêt radiatif généré par l'émission du rayonnement continu de freinage au champ électrique des noyaux du matériau traversé[4].

Il existe différents modèles semi-empiriques pour calculer le pouvoir d'arrêt, notamment le modèle de Ziegler, Biersack et Littmark décrit à l'origine dans leur ouvrage[5] et désormais largement utilisé par l'intermédiaire de programmes téléchargeables[6].

Références[modifier | modifier le code]

  1. (en) P. Sigmund, Particle Penetration and Radiation Effects: General Aspects and Stopping of Swift Point Charges, Springer, coll. « Solid-state sciences », (ISBN 978-3-540-31713-5, présentation en ligne)
  2. Une collection de mesures expérimentales compilée par H. Paul sur le site de l'université de Linz
  3. (en) H. Paul, A comparison of recent stopping power tables for light and medium-heavy ions with experimental data, and applications to radiotherapy dosimetry, vol. 247 issue 2, Elsevier Science, coll. « Nucl. Instrum. Methods Phys. Res. B », (ISSN 0168-583X, présentation en ligne), p. 166-172
  4. a et b ICRU Report 60: Fundamental Quantities and Units for Ionizing Radiation. International Commission on Radiation Units and Measurements, Bethesda, MD, USA (1998)
  5. J. F. Ziegler, J. P. Biersack et U. Littmark, The Stopping and Range of Ions in Matter, vol. 1, Pergamon Press, (ISBN 0-08-021603-X)
  6. La page de téléchargement du logiciel SRIM chez J.F. Ziegler

Liens externes[modifier | modifier le code]